Group-Wise Feature Fusion R-CNN for Dual-Polarization SAR Ship Detection

Xiaowo Xu, Xiaoling Zhang, Tianjiao Zeng, Jun Shi, Zikang Shao, Tianwen Zhang
{"title":"Group-Wise Feature Fusion R-CNN for Dual-Polarization SAR Ship Detection","authors":"Xiaowo Xu, Xiaoling Zhang, Tianjiao Zeng, Jun Shi, Zikang Shao, Tianwen Zhang","doi":"10.1109/RadarConf2351548.2023.10149675","DOIUrl":null,"url":null,"abstract":"Ship detection in synthetic aperture radar (SAR) images is a hot pot in the remote sensing (RS) field. However, most existing deep learning (DL)-based methods only focus on the single-polarization SAR ship detection without leveraging the rich dual-polarization SAR features, which poses a huge obstacle to the further model performance improvement. One problem for solution is how to fully excavate polarization characteristics using a convolution neural network (CNN). To address the above problem, we propose a novel group-wise feature fusion R-CNN (GWFF R-CNN) for dual-polarization SAR ship detection. Different from raw Faster R-CNN, GWFF R-CNN embeds a group-wise feature fusion module (GWFF module) into the subnetwork of Faster R-CNN, which enables group-wise feature fusion between polarization features and multi-scale ship features. Finally, the experiments on the dual-polarization SAR ship detection dataset (DSSDD) demonstrate that GWFF R-CNN can yield a ~4.1 F1 improvement and a ~2.9 average precision (AP) improvement, compared with Faster R-CNN.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ship detection in synthetic aperture radar (SAR) images is a hot pot in the remote sensing (RS) field. However, most existing deep learning (DL)-based methods only focus on the single-polarization SAR ship detection without leveraging the rich dual-polarization SAR features, which poses a huge obstacle to the further model performance improvement. One problem for solution is how to fully excavate polarization characteristics using a convolution neural network (CNN). To address the above problem, we propose a novel group-wise feature fusion R-CNN (GWFF R-CNN) for dual-polarization SAR ship detection. Different from raw Faster R-CNN, GWFF R-CNN embeds a group-wise feature fusion module (GWFF module) into the subnetwork of Faster R-CNN, which enables group-wise feature fusion between polarization features and multi-scale ship features. Finally, the experiments on the dual-polarization SAR ship detection dataset (DSSDD) demonstrate that GWFF R-CNN can yield a ~4.1 F1 improvement and a ~2.9 average precision (AP) improvement, compared with Faster R-CNN.
基于群智特征融合R-CNN的双极化SAR舰船检测
合成孔径雷达(SAR)图像中的船舶检测一直是遥感领域的研究热点。然而,现有的基于深度学习(DL)的方法大多只关注单极化SAR舰船检测,没有利用丰富的双极化SAR特征,这对进一步提高模型性能造成了巨大的障碍。解决的一个问题是如何利用卷积神经网络(CNN)充分挖掘极化特征。为了解决上述问题,我们提出了一种新型的群体特征融合R-CNN (GWFF R-CNN)用于双极化SAR舰船检测。与原始的Faster R-CNN不同,GWFF R-CNN在Faster R-CNN的子网络中嵌入了GWFF模块(group-wise feature fusion module),实现了极化特征与多尺度船舶特征之间的群智能特征融合。最后,在双极化SAR舰船检测数据集(DSSDD)上进行的实验表明,与Faster R-CNN相比,GWFF R-CNN可提高~4.1 F1,平均精度(AP)提高~2.9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信