Effect of weighting parameters on dynamical behavior of Hopfield neural networks with logistic map activation functions

Nariman Mahdavi Mazdeh, M. Menhaj, A. Afshar
{"title":"Effect of weighting parameters on dynamical behavior of Hopfield neural networks with logistic map activation functions","authors":"Nariman Mahdavi Mazdeh, M. Menhaj, A. Afshar","doi":"10.1109/CICA.2009.4982783","DOIUrl":null,"url":null,"abstract":"In ANN terminology, the synaptic connections are the weights of the neural networks and can be seen as an interaction between neurons. In this paper, we consider two simple neurons which have both self-coupling and non-invertible activation functions. Our studies on these interactions lead to different dynamical behaviors of the network. We show that they can be used as a means of chaos generation or suppression to neuron's outputs when more adaptability or stability is required. This idea may be further used for chaos synchronization of neuron's outputs.","PeriodicalId":383751,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2009.4982783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In ANN terminology, the synaptic connections are the weights of the neural networks and can be seen as an interaction between neurons. In this paper, we consider two simple neurons which have both self-coupling and non-invertible activation functions. Our studies on these interactions lead to different dynamical behaviors of the network. We show that they can be used as a means of chaos generation or suppression to neuron's outputs when more adaptability or stability is required. This idea may be further used for chaos synchronization of neuron's outputs.
加权参数对逻辑映射激活函数Hopfield神经网络动态行为的影响
在人工神经网络术语中,突触连接是神经网络的权重,可以看作是神经元之间的相互作用。本文考虑两个具有自耦合和不可逆激活函数的简单神经元。我们对这些相互作用的研究导致了网络的不同动力学行为。我们表明,当需要更多的适应性或稳定性时,它们可以用作混沌产生或抑制神经元输出的手段。该思想可进一步应用于神经元输出的混沌同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信