Option-Implied Intra-Horizon Value-at-Risk

Markus Leippold, N. Vasiljević
{"title":"Option-Implied Intra-Horizon Value-at-Risk","authors":"Markus Leippold, N. Vasiljević","doi":"10.2139/ssrn.2804702","DOIUrl":null,"url":null,"abstract":"We study the intra-horizon value at risk (iVaR) in a general jump diffusion setup and propose a new model of asset returns called displaced mixed-exponential model, which can arbitrarily closely approximate finite-activity jump-diffusions and completely monotone Levy processes. We derive analytical results for the iVaR and disentangle the risk contribution of jumps from diffusion. Estimating the iVaR for several popular jump models using on S&P 100 option data, we find that option-implied estimates are much more responsive to market changes relative to their historical counterparts. Moreover, disentangling jumps from diffusion, jump account for about 90 percent of iVaR on average.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2804702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study the intra-horizon value at risk (iVaR) in a general jump diffusion setup and propose a new model of asset returns called displaced mixed-exponential model, which can arbitrarily closely approximate finite-activity jump-diffusions and completely monotone Levy processes. We derive analytical results for the iVaR and disentangle the risk contribution of jumps from diffusion. Estimating the iVaR for several popular jump models using on S&P 100 option data, we find that option-implied estimates are much more responsive to market changes relative to their historical counterparts. Moreover, disentangling jumps from diffusion, jump account for about 90 percent of iVaR on average.
期权隐含的地平线内风险价值
本文研究了一般跳跃扩散情况下的视界内风险值(iVaR),提出了一种新的资产收益模型,称为位移混合指数模型,该模型可以任意接近有限活度跳跃扩散和完全单调Levy过程。我们得到了iVaR的分析结果,并从扩散中分离出跳跃的风险贡献。使用标准普尔100期权数据估计几种流行跳跃模型的iVaR,我们发现期权隐含估计相对于其历史对应物更能响应市场变化。此外,解缠跃迁和扩散跃迁平均约占iVaR的90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信