{"title":"Construction and decoding of generalized skew-evaluation codes","authors":"Siyu Liu, Felice Manganiello, F. Kschischang","doi":"10.1109/CWIT.2015.7255141","DOIUrl":null,"url":null,"abstract":"Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.","PeriodicalId":426245,"journal":{"name":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2015.7255141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Skew polynomials are elements of a noncommutative ring that, in recent years, have found applications in coding theory and cryptography. Skew polynomials have a well-defined evaluation map. This map leads to the definition of a class of codes called Generalized Skew-Evaluation codes that contains Gabidulin codes as a special case as well as other related codes with additional desirable properties. A Berlekamp-Welch-type decoder for an important class of these codes can be constructed using Kötter interpolation in skew polynomial rings.