Shadow Removal from Digital Images using Multi-channel Binarization and Shadow Matting

Saiqa Khan, Zainab Pirani, Taniya Fansupkar, Umama Maghrabi
{"title":"Shadow Removal from Digital Images using Multi-channel Binarization and Shadow Matting","authors":"Saiqa Khan, Zainab Pirani, Taniya Fansupkar, Umama Maghrabi","doi":"10.1109/I-SMAC47947.2019.9032447","DOIUrl":null,"url":null,"abstract":"Shadow removal has developed gradually as a preprocessing step for image classification, object detection, information extraction, etc. Existing techniques used by researchers typically make use of segmentation, deep learning to obtain accurate results, which leads to the high cost of processing the image. This paper presents a comprehensive survey study of shadow detection and removal from images. We present our methodology for improving the process of shadow removal which will use machine learning to train the system with standard dataset available (for eg. SBU->Stony Brook University[12]) and then a test data will be entered by the user via an easy to use user application. Training the images will include converting the image into grayscale, YCbCr and CIE L*a*b* colorspace then performing multi-channel binarization which will convert the image to binary on the basis of a threshold value for shadow detection. This shadow detected image will then be filtered to remove noisy false positive regions. This filtered image will be passed to the Canny edge detection algorithm for detecting edges of shadow and then repainting it by shadow matting technique to remove shadows.","PeriodicalId":275791,"journal":{"name":"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC47947.2019.9032447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Shadow removal has developed gradually as a preprocessing step for image classification, object detection, information extraction, etc. Existing techniques used by researchers typically make use of segmentation, deep learning to obtain accurate results, which leads to the high cost of processing the image. This paper presents a comprehensive survey study of shadow detection and removal from images. We present our methodology for improving the process of shadow removal which will use machine learning to train the system with standard dataset available (for eg. SBU->Stony Brook University[12]) and then a test data will be entered by the user via an easy to use user application. Training the images will include converting the image into grayscale, YCbCr and CIE L*a*b* colorspace then performing multi-channel binarization which will convert the image to binary on the basis of a threshold value for shadow detection. This shadow detected image will then be filtered to remove noisy false positive regions. This filtered image will be passed to the Canny edge detection algorithm for detecting edges of shadow and then repainting it by shadow matting technique to remove shadows.
使用多通道二值化和阴影抠图从数字图像中去除阴影
阴影去除作为图像分类、目标检测、信息提取等预处理步骤逐渐发展起来。研究人员现有的技术通常是利用分割、深度学习来获得准确的结果,这导致了图像处理成本高。本文对图像的阴影检测与去除进行了全面的综述研究。我们提出了改进阴影去除过程的方法,该方法将使用机器学习来训练系统与可用的标准数据集(例如。SBU->Stony Brook University[12]),然后用户将通过一个易于使用的用户应用程序输入测试数据。训练图像将包括将图像转换为灰度,YCbCr和CIE L*a*b*色彩空间,然后执行多通道二值化,将图像转换为基于阴影检测阈值的二值化。这个阴影检测图像然后将被过滤,以去除噪声假阳性区域。过滤后的图像将被传递给Canny边缘检测算法检测阴影的边缘,然后通过阴影抠图技术重新绘制以去除阴影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信