Empirical Evaluation of Character Classification Schemes

N. V. Neeba, C. V. Jawahar
{"title":"Empirical Evaluation of Character Classification Schemes","authors":"N. V. Neeba, C. V. Jawahar","doi":"10.1109/ICAPR.2009.41","DOIUrl":null,"url":null,"abstract":"In this paper, we empirically study the performance of a set of pattern classification schemes for character classification problems. We argue that with a rich feature space, this class of problems can be solved with reasonable success using a set of statistical feature extraction schemes. Experimental validation is done on a data set (of more than 500000 characters) collected and annotated from books printed primarily in Malayalam. Scope of this study include (a) applicability of a spectrum of classifiers and features (b) scalability of classifiers (c) sensitivity of features to degradation (d) generalization across fonts and (e) applicability across scripts.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we empirically study the performance of a set of pattern classification schemes for character classification problems. We argue that with a rich feature space, this class of problems can be solved with reasonable success using a set of statistical feature extraction schemes. Experimental validation is done on a data set (of more than 500000 characters) collected and annotated from books printed primarily in Malayalam. Scope of this study include (a) applicability of a spectrum of classifiers and features (b) scalability of classifiers (c) sensitivity of features to degradation (d) generalization across fonts and (e) applicability across scripts.
字符分类方案的实证评价
本文对一组模式分类方案在字符分类问题上的性能进行了实证研究。我们认为,在一个丰富的特征空间中,这类问题可以使用一组统计特征提取方案来成功地解决。实验验证是在一个数据集(超过500000个字符)上完成的,这些数据集收集并注释了主要用马拉雅拉姆语印刷的书籍。本研究的范围包括(a)一系列分类器和特征的适用性(b)分类器的可扩展性(c)特征对退化的敏感性(d)跨字体的泛化和(e)跨脚本的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信