LBP parameter tuning for texture analysis of lace images

Vinh Truong Hoang, A. Porebski, N. Vandenbroucke, D. Hamad
{"title":"LBP parameter tuning for texture analysis of lace images","authors":"Vinh Truong Hoang, A. Porebski, N. Vandenbroucke, D. Hamad","doi":"10.1109/IPAS.2016.7880063","DOIUrl":null,"url":null,"abstract":"Analysis of lace texture images is a challenging problem because the lace is a soft and extensible material and can be easily deformed. This paper investigates a whole system for lace classification. A first step, based on Otsu's segmentation method, allows to remove the background. Then the lace texture is characterized using local binary patterns (LBP). In order to be robust against rotation the Fourier Transform is applied on LBP histograms. The magnitude spectrum of this transform is then used as a feature vector. LBP descriptor parameters, including radius and number of neighbors, are adjusted in order to improve their relevance. The experiments show that the features based on LBP, with appropriate settings, produced good results in supervised and unsupervised contexts.","PeriodicalId":283737,"journal":{"name":"2016 International Image Processing, Applications and Systems (IPAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Image Processing, Applications and Systems (IPAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPAS.2016.7880063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Analysis of lace texture images is a challenging problem because the lace is a soft and extensible material and can be easily deformed. This paper investigates a whole system for lace classification. A first step, based on Otsu's segmentation method, allows to remove the background. Then the lace texture is characterized using local binary patterns (LBP). In order to be robust against rotation the Fourier Transform is applied on LBP histograms. The magnitude spectrum of this transform is then used as a feature vector. LBP descriptor parameters, including radius and number of neighbors, are adjusted in order to improve their relevance. The experiments show that the features based on LBP, with appropriate settings, produced good results in supervised and unsupervised contexts.
蕾丝图像纹理分析的LBP参数调优
蕾丝是一种柔软、易拉伸、易变形的材料,因此对蕾丝纹理图像的分析是一个具有挑战性的问题。本文研究了一个完整的蕾丝分类系统。第一步,基于Otsu的分割方法,允许移除背景。然后利用局部二值模式(LBP)对蕾丝纹理进行表征。为了增强对旋转的鲁棒性,对LBP直方图进行傅里叶变换。然后将该变换的幅度谱用作特征向量。调整LBP描述子参数,包括半径和邻居数,以提高它们的相关性。实验表明,在适当的设置下,基于LBP的特征在有监督和无监督环境下都能产生良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信