Recent progress in intersection theory for Feynman integrals decomposition.

V. Chestnov
{"title":"Recent progress in intersection theory for Feynman integrals decomposition.","authors":"V. Chestnov","doi":"10.22323/1.416.0058","DOIUrl":null,"url":null,"abstract":"High precision calculations in perturbative QFT often require evaluation of big collection of Feynman integrals. Complexity of this task can be greatly reduced via the usage of linear identities among Feynman integrals. Based on mathematical theory of intersection numbers, recently a new method for derivation of such identities and decomposition of Feynman integrals was introduced and applied to many non-trivial examples. In this note based on [1] we discuss the latest developments in algorithms for the evaluation of intersection numbers, and their application to the reduction of Feynman integrals.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

High precision calculations in perturbative QFT often require evaluation of big collection of Feynman integrals. Complexity of this task can be greatly reduced via the usage of linear identities among Feynman integrals. Based on mathematical theory of intersection numbers, recently a new method for derivation of such identities and decomposition of Feynman integrals was introduced and applied to many non-trivial examples. In this note based on [1] we discuss the latest developments in algorithms for the evaluation of intersection numbers, and their application to the reduction of Feynman integrals.
费曼积分分解的交理论研究进展。
在微扰QFT中,高精度计算通常需要计算大量的费曼积分。通过使用费曼积分中的线性恒等式,可以大大降低这一任务的复杂性。基于交数的数学理论,提出了一种新的求交数恒等式和分解费曼积分的方法,并应用于许多非平凡的例子。本文在文献[1]的基础上讨论了求交数算法的最新进展,以及它们在费曼积分约简中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信