Computing temporal aggregates

N. Kline, R. Snodgrass
{"title":"Computing temporal aggregates","authors":"N. Kline, R. Snodgrass","doi":"10.1109/ICDE.1995.380389","DOIUrl":null,"url":null,"abstract":"Aggregate computation, such as selecting the minimum attribute value of a relation, is expensive, especially in a temporal database. We describe the basic techniques behind computing aggregates in conventional databases and show that these techniques are not efficient when applied to temporal databases. We examine the problem of computing constant intervals (intervals of time for which the aggregate value is constant) used for temporal grouping. We introduce two new algorithms for computing temporal aggregates: the aggregation tree and the k-ordered aggregation tree. An empirical comparison demonstrates that the choice of algorithm depends in part on the amount of memory available, the number of tuples in the underlying relation, and the degree to which the tuples are ordered. This study shows that the simplest strategy is to first sort the underlying relation, then apply the k-ordered aggregation tree algorithm with k=1.<<ETX>>","PeriodicalId":184415,"journal":{"name":"Proceedings of the Eleventh International Conference on Data Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1995.380389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

Aggregate computation, such as selecting the minimum attribute value of a relation, is expensive, especially in a temporal database. We describe the basic techniques behind computing aggregates in conventional databases and show that these techniques are not efficient when applied to temporal databases. We examine the problem of computing constant intervals (intervals of time for which the aggregate value is constant) used for temporal grouping. We introduce two new algorithms for computing temporal aggregates: the aggregation tree and the k-ordered aggregation tree. An empirical comparison demonstrates that the choice of algorithm depends in part on the amount of memory available, the number of tuples in the underlying relation, and the degree to which the tuples are ordered. This study shows that the simplest strategy is to first sort the underlying relation, then apply the k-ordered aggregation tree algorithm with k=1.<>
计算时间聚合
聚合计算(例如选择关系的最小属性值)非常昂贵,特别是在时态数据库中。我们描述了传统数据库中计算聚合背后的基本技术,并表明这些技术在应用于时态数据库时效率不高。我们研究了计算用于时间分组的常数区间(集合值为常数的时间区间)的问题。我们介绍了两种计算时间聚合的新算法:聚合树和k序聚合树。经验比较表明,算法的选择部分取决于可用的内存量、底层关系中的元组数量以及元组排序的程度。研究表明,最简单的策略是先对底层关系进行排序,然后应用k=1.>的k有序聚合树算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信