Vector representation of non-standard spellings using dynamic time warping and a denoising autoencoder

M. B. Lazreg, M. G. Olsen, Ole-Christoffer Granmo
{"title":"Vector representation of non-standard spellings using dynamic time warping and a denoising autoencoder","authors":"M. B. Lazreg, M. G. Olsen, Ole-Christoffer Granmo","doi":"10.1109/CEC.2017.7969473","DOIUrl":null,"url":null,"abstract":"The presence of non-standard spellings in Twitter causes challenges for many natural language processing tasks. Traditional approaches mainly regard the problem as a translation, spell checking, or speech recognition problem. This paper proposes a method that represents the stochastic relationship between words and their non-standard versions in real vectors. The method uses dynamic time warping to preprocess the non-standard spellings and autoencoder to derive the vector representation. The derived vectors encode word patterns and the Euclidean distance between the vectors represents a distance in the word space that challenges the prevailing edit distance. After training the autoencoder on 1051 different words and their non-standard versions, the results show that the new distance can be used to obtain the correct standard word among the closest five words in 89.53% of the cases compared to only 68.22% using the edit distance.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The presence of non-standard spellings in Twitter causes challenges for many natural language processing tasks. Traditional approaches mainly regard the problem as a translation, spell checking, or speech recognition problem. This paper proposes a method that represents the stochastic relationship between words and their non-standard versions in real vectors. The method uses dynamic time warping to preprocess the non-standard spellings and autoencoder to derive the vector representation. The derived vectors encode word patterns and the Euclidean distance between the vectors represents a distance in the word space that challenges the prevailing edit distance. After training the autoencoder on 1051 different words and their non-standard versions, the results show that the new distance can be used to obtain the correct standard word among the closest five words in 89.53% of the cases compared to only 68.22% using the edit distance.
使用动态时间扭曲和去噪自动编码器的非标准拼写的矢量表示
Twitter中存在的非标准拼写给许多自然语言处理任务带来了挑战。传统的方法主要将问题视为翻译、拼写检查或语音识别问题。本文提出了一种用实向量表示单词与其非标准版本之间的随机关系的方法。该方法使用动态时间扭曲对非标准拼写进行预处理,并使用自编码器导出向量表示。衍生的向量编码单词模式,向量之间的欧几里得距离表示单词空间中的距离,挑战当前的编辑距离。在对1051个不同的单词及其非标准版本进行训练后,结果表明,在89.53%的情况下,新距离可以在最接近的5个单词中获得正确的标准单词,而使用编辑距离的情况仅为68.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信