Mining rare cases in post-operative pain by means of outlier detection

Mobyen Uddin Ahmed, P. Funk
{"title":"Mining rare cases in post-operative pain by means of outlier detection","authors":"Mobyen Uddin Ahmed, P. Funk","doi":"10.1109/ISSPIT.2011.6151532","DOIUrl":null,"url":null,"abstract":"Rare cases are often interesting for health professionals, physicians, researchers and clinicians in order to reuse and disseminate experiences in healthcare. However, mining, i.e. identification of rare cases in electronic patient records, is non-trivial for information technology. This paper investigates a number of well-known clustering algorithms and finally applies a 2nd order clustering approach by combining the Fuzzy C-means algorithm with the Hierarchical one. The approach was used to identify rare cases from 1572 patient cases in the domain of post-operative pain treatment. The results show that the approach enables the identification of rare cases in the domain of post-operative pain treatment and 18% of cases were identified as rare.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Rare cases are often interesting for health professionals, physicians, researchers and clinicians in order to reuse and disseminate experiences in healthcare. However, mining, i.e. identification of rare cases in electronic patient records, is non-trivial for information technology. This paper investigates a number of well-known clustering algorithms and finally applies a 2nd order clustering approach by combining the Fuzzy C-means algorithm with the Hierarchical one. The approach was used to identify rare cases from 1572 patient cases in the domain of post-operative pain treatment. The results show that the approach enables the identification of rare cases in the domain of post-operative pain treatment and 18% of cases were identified as rare.
用异常值检测方法挖掘手术后疼痛的罕见病例
卫生专业人员、医生、研究人员和临床医生往往对罕见病例感兴趣,以便重用和传播卫生保健方面的经验。然而,挖掘,即在电子病历中识别罕见病例,对于信息技术来说是非常重要的。本文研究了许多著名的聚类算法,最后将模糊c均值算法与分层聚类算法相结合,提出了一种二阶聚类方法。该方法用于从1572例术后疼痛治疗领域的患者中识别罕见病例。结果表明,该方法能够识别手术后疼痛治疗领域的罕见病例,18%的病例被确定为罕见病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信