{"title":"Research on Intelligent Network Operation Management System Based on Anomaly Detection and Time Series Forecasting Algorithms","authors":"Jian Guo, Huan Guo, Zhong Zhang","doi":"10.1109/TOCS56154.2022.10016167","DOIUrl":null,"url":null,"abstract":"The research try to implements an intelligent network operation management system for enterprise networks. First, based on Flask-state software architecture, the system adapt to Phytium CPU and Galaxy Kylin operating system successfully. Second, using the Isolation Forest algorithm, the system implements the anomaly detection of host data such as CPU usage. Third, using the Holt-winters seasonal prediction model, the system can predict time series data such as network I/O. The results show that the system can realizes anomaly detection and time series data prediction more precisely and intelligently.","PeriodicalId":227449,"journal":{"name":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS56154.2022.10016167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The research try to implements an intelligent network operation management system for enterprise networks. First, based on Flask-state software architecture, the system adapt to Phytium CPU and Galaxy Kylin operating system successfully. Second, using the Isolation Forest algorithm, the system implements the anomaly detection of host data such as CPU usage. Third, using the Holt-winters seasonal prediction model, the system can predict time series data such as network I/O. The results show that the system can realizes anomaly detection and time series data prediction more precisely and intelligently.