Deep Reinforcement Learning Edge Workload Orchestrator for Vehicular Edge Computing

Eliana Neuza Silva, Fernando Mira da Silva
{"title":"Deep Reinforcement Learning Edge Workload Orchestrator for Vehicular Edge Computing","authors":"Eliana Neuza Silva, Fernando Mira da Silva","doi":"10.1109/NetSoft57336.2023.10175484","DOIUrl":null,"url":null,"abstract":"Smart vehicles in Vehicular Edge Computing Environments run latency sensitive applications, such as driver assistance, autonomous driving, accident prevention and others that require quick response times due to low latency constraints. This work focus on the workload orchestration and the decision to offload vehicular application tasks from vehicles to the network edge to increase computing powers and minimize latency. We introduce a new offloading orchestration algorithm based on Deep Reinforcement Learning. We show that the proposed algorithm has a lower task failure rate than the best solutions from the literature, while requiring lower computational power.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Smart vehicles in Vehicular Edge Computing Environments run latency sensitive applications, such as driver assistance, autonomous driving, accident prevention and others that require quick response times due to low latency constraints. This work focus on the workload orchestration and the decision to offload vehicular application tasks from vehicles to the network edge to increase computing powers and minimize latency. We introduce a new offloading orchestration algorithm based on Deep Reinforcement Learning. We show that the proposed algorithm has a lower task failure rate than the best solutions from the literature, while requiring lower computational power.
用于车辆边缘计算的深度强化学习边缘工作负载协调器
车辆边缘计算环境中的智能车辆运行延迟敏感应用程序,例如驾驶员辅助,自动驾驶,事故预防等由于低延迟限制而需要快速响应时间的应用程序。这项工作的重点是工作负载编排和将车辆应用程序任务从车辆卸载到网络边缘的决策,以提高计算能力并最小化延迟。提出了一种新的基于深度强化学习的卸载编排算法。结果表明,该算法的任务失败率低于文献中的最佳解,同时需要更低的计算能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信