Enhanced CT Image Generation by GAN for Improving Thyroid Anatomy Detection

Jianyu Shi, Xiaohong Liu, Guoxing Yang, Guangyu Wang
{"title":"Enhanced CT Image Generation by GAN for Improving Thyroid Anatomy Detection","authors":"Jianyu Shi, Xiaohong Liu, Guoxing Yang, Guangyu Wang","doi":"10.1109/BIBM55620.2022.9995366","DOIUrl":null,"url":null,"abstract":"Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computed tomography (CT) is one of the most imaging methods widely used to locate lesions such as nodules, tumors, and cysts, and make primary diagnosis. For clearer imaging of anatomical or lesions, contrast-enhanced CT (CECT) scans are imaging with injecting a contrast agent into a patient during examination. But there are limits to iodine contrast injections so that CECT scans are not convenient like non-contrast enhanced CT (NECT). Recently, deep learning models bring impressive results in computer vision, including image translation. So, we would like to apply image translation methods to generate CECT images from the more accessible NECT images, and evaluate the effects of generated images on image detection tasks. In this study, we propose a method called cross-modal enhancement training strategy for thyroid anatomy detection, which employs CycleGAN to translate non-constrast enhanced CT images to enhanced CT style images with content reserved. The experiments are conducted on thyroid CT images with anatomy object annotation. The experimental results show that by adding translated images into the training dataset, the performance of thyroid anatomy detection can be effectively improved. We achieve the best mAP of 82.5% compared to 73.2% in the along non-contrast enhanced CT training.
基于GAN的增强CT图像生成改进甲状腺解剖检测
计算机断层扫描(CT)是目前广泛应用于结节、肿瘤、囊肿等病变定位和初步诊断的影像学方法之一。为了更清晰地成像解剖或病变,对比增强CT (CECT)扫描是在检查期间向患者注射造影剂进行成像。但是由于碘造影剂注射的限制,使得CECT扫描不像非对比增强CT (NECT)那样方便。最近,深度学习模型在计算机视觉领域取得了令人印象深刻的成果,包括图像翻译。因此,我们希望应用图像转换方法从更容易访问的NECT图像中生成CECT图像,并评估生成的图像对图像检测任务的影响。在本研究中,我们提出了一种名为交叉模态增强训练策略的甲状腺解剖检测方法,该方法使用CycleGAN将非对比增强CT图像转换为保留内容的增强CT图像。实验在带有解剖对象注释的甲状腺CT图像上进行。实验结果表明,将翻译后的图像添加到训练数据集中,可以有效地提高甲状腺解剖检测的性能。我们获得了82.5%的最佳mAP,而在沿程非对比增强CT训练中为73.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信