Unsupervised STDP-based Radioisotope Identification Using Spiking Neural Networks Implemented on SpiNNaker

Shouyu Xie, E. Jones, Edward Marsden, I. Baistow, S. Furber, S. Mitra, A. Hamilton
{"title":"Unsupervised STDP-based Radioisotope Identification Using Spiking Neural Networks Implemented on SpiNNaker","authors":"Shouyu Xie, E. Jones, Edward Marsden, I. Baistow, S. Furber, S. Mitra, A. Hamilton","doi":"10.1109/EBCCSP56922.2022.9845586","DOIUrl":null,"url":null,"abstract":"This paper presents a spiking neural network (SNN) implementation which employs unsupervised feature extraction using spike timing dependent plasticity (STDP) to classify 8 different radioisotopes. With the implementation, the accuracy could reach 80% during training and overall testing accuracy of 72%. The whole network was implemented on SpiNNaker, a spiking neural network emulation platform. This work shows that unsupervised STDP, an SNN native training method, can be applied to the classification task of RIID to provide event-based training as well as inference.","PeriodicalId":383039,"journal":{"name":"2022 8th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP56922.2022.9845586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a spiking neural network (SNN) implementation which employs unsupervised feature extraction using spike timing dependent plasticity (STDP) to classify 8 different radioisotopes. With the implementation, the accuracy could reach 80% during training and overall testing accuracy of 72%. The whole network was implemented on SpiNNaker, a spiking neural network emulation platform. This work shows that unsupervised STDP, an SNN native training method, can be applied to the classification task of RIID to provide event-based training as well as inference.
基于stdp的无监督放射性同位素识别在SpiNNaker上的应用
本文提出了一种脉冲神经网络(SNN)实现方法,该方法采用无监督特征提取方法,利用脉冲定时相关可塑性(STDP)对8种不同的放射性同位素进行分类。实现后,训练时准确率可达80%,整体测试准确率可达72%。整个网络在SpiNNaker神经网络仿真平台上实现。这项工作表明,无监督STDP是一种SNN原生训练方法,可以应用于RIID的分类任务,提供基于事件的训练和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信