Local feature reliability measure using multiview synthetic images for mobile visual search

Kohei Matsuzaki, Yusuke Uchida, S. Sakazawa, S. Satoh
{"title":"Local feature reliability measure using multiview synthetic images for mobile visual search","authors":"Kohei Matsuzaki, Yusuke Uchida, S. Sakazawa, S. Satoh","doi":"10.1109/ACPR.2015.7486485","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new database (DB) construction method for the mobile visual search (MVS) system based on the local feature and bag-of-visual-words framework. In MVS, quantization error is unavoidable and causes performance degradation. Typical approaches for visual search extract features from a single view of reference images, though such features are insufficient to manage the quantization error. In this paper, we generate multiview synthetic images and extract local features. These features are resampled according to our novel reliability measure in order to reduce the DB size. Experiments on the three datasets show that the proposed method successfully constructs a robust DB with same size. The proposed method improved the mean average precision compared with a conventional method without changing the searching procedure.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new database (DB) construction method for the mobile visual search (MVS) system based on the local feature and bag-of-visual-words framework. In MVS, quantization error is unavoidable and causes performance degradation. Typical approaches for visual search extract features from a single view of reference images, though such features are insufficient to manage the quantization error. In this paper, we generate multiview synthetic images and extract local features. These features are resampled according to our novel reliability measure in order to reduce the DB size. Experiments on the three datasets show that the proposed method successfully constructs a robust DB with same size. The proposed method improved the mean average precision compared with a conventional method without changing the searching procedure.
基于多视图合成图像的移动视觉搜索局部特征可靠性度量
本文提出了一种基于局部特征和视觉词袋框架的移动视觉搜索系统数据库构建方法。在MVS中,量化误差是不可避免的,会导致性能下降。典型的视觉搜索方法是从参考图像的单一视图中提取特征,尽管这些特征不足以管理量化误差。在本文中,我们生成多视图合成图像并提取局部特征。这些特征是根据我们的新可靠性措施重新采样,以减少DB的大小。在三个数据集上的实验表明,该方法成功地构建了具有相同大小的鲁棒数据库。与传统方法相比,该方法在不改变搜索过程的前提下提高了平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信