Path Planning of Follow-up Transport Robot Based on Machine Vision

Xinyi Sun, Haiyi Sun, Xinlu Wang, Ning Li
{"title":"Path Planning of Follow-up Transport Robot Based on Machine Vision","authors":"Xinyi Sun, Haiyi Sun, Xinlu Wang, Ning Li","doi":"10.1109/ISAIAM55748.2022.00016","DOIUrl":null,"url":null,"abstract":"With the upgrading and innovation of the logistics industry, the requirements for the level of transportation smart technologies continue to increase. The outbreak of the COVID-19 has further promoted the development of unmanned transportation machines. Aimed at the requirements of intelligent following and automatic obstacle avoidance of mobile robots in dynamic and complex environments, this paper uses machine vision to realize the visual perception function, and studies the real-time path planning of robots in complicated environment. And this paper proposes the Dijkstra-ant colony optimization (ACO) fusion algorithm, the environment model is established by the link viewable method, the Dijkstra algorithm plans the initial path. The introduction of immune operators improves the ant colony algorithm to optimize the initial path. Finally, the simulation experiment proves that the fusion algorithm has good reliability in a dynamic environment.","PeriodicalId":382895,"journal":{"name":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIAM55748.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the upgrading and innovation of the logistics industry, the requirements for the level of transportation smart technologies continue to increase. The outbreak of the COVID-19 has further promoted the development of unmanned transportation machines. Aimed at the requirements of intelligent following and automatic obstacle avoidance of mobile robots in dynamic and complex environments, this paper uses machine vision to realize the visual perception function, and studies the real-time path planning of robots in complicated environment. And this paper proposes the Dijkstra-ant colony optimization (ACO) fusion algorithm, the environment model is established by the link viewable method, the Dijkstra algorithm plans the initial path. The introduction of immune operators improves the ant colony algorithm to optimize the initial path. Finally, the simulation experiment proves that the fusion algorithm has good reliability in a dynamic environment.
基于机器视觉的后续运输机器人路径规划
随着物流业的升级创新,对交通智能技术水平的要求不断提高。新冠肺炎疫情的爆发进一步推动了无人驾驶交通工具的发展。本文针对移动机器人在动态复杂环境下的智能跟随和自动避障需求,利用机器视觉实现视觉感知功能,研究复杂环境下机器人的实时路径规划。并提出了Dijkstra-蚁群优化(ACO)融合算法,采用链接可见法建立环境模型,Dijkstra算法规划初始路径。免疫算子的引入改进了蚁群算法的初始路径优化。最后,仿真实验证明了该融合算法在动态环境下具有良好的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信