{"title":"Modeling distributed beamforming in wireless networks","authors":"K. Hardwick, D. Goeckel, D. Towsley","doi":"10.1109/ALLERTON.2008.4797596","DOIUrl":null,"url":null,"abstract":"Distributed beamforming in wireless ad hoc networks has the promise of greatly improving network throughput. However, unlike traditional beamforming from a fixed array, the random locations of the nodes collaborating to form the array lead to a random beam pattern. In particular, the position and size of side lobes can vary greatly and have a significant impact on the concurrent transmissions that are the source of much of the throughput gain realized from distributed beamforming. Here, we present a simple model that captures this randomness and then use the model to consider the average throughput of a large ad hoc wireless networks. Numerical results are compared to those obtained if one employs the oft-used pie-wedge approximation for a directed antenna beam, and the difference is shown to be significant in regions where the side lobe interference is non-negligible.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Distributed beamforming in wireless ad hoc networks has the promise of greatly improving network throughput. However, unlike traditional beamforming from a fixed array, the random locations of the nodes collaborating to form the array lead to a random beam pattern. In particular, the position and size of side lobes can vary greatly and have a significant impact on the concurrent transmissions that are the source of much of the throughput gain realized from distributed beamforming. Here, we present a simple model that captures this randomness and then use the model to consider the average throughput of a large ad hoc wireless networks. Numerical results are compared to those obtained if one employs the oft-used pie-wedge approximation for a directed antenna beam, and the difference is shown to be significant in regions where the side lobe interference is non-negligible.