RASNet: A Reinforcement Assistant Network for Frame Selection in Video-based Posture Recognition

Ruotong Hu, Xianzhi Wang, Xiaojun Chang, Yeqi Hu, Xiaowei Xin, Xiangqian Ding, Baoqi Guo
{"title":"RASNet: A Reinforcement Assistant Network for Frame Selection in Video-based Posture Recognition","authors":"Ruotong Hu, Xianzhi Wang, Xiaojun Chang, Yeqi Hu, Xiaowei Xin, Xiangqian Ding, Baoqi Guo","doi":"10.1109/ICME55011.2023.00366","DOIUrl":null,"url":null,"abstract":"Most existing video-based posture recognition methods treat frames equally using unified or random sampling strategies, thus losing the temporal relationship information among frames. To address this problem, we propose a lightweight framework, namely RASNet, to adaptively select informative frames for recognition. Specifically, we design a video-suited exploration environment to guide the agent in learning the selection strategy. We introduce the reparametrization method to convert the discrete action space into a continuous space, making the agent robust and random. For the reward part, we design a multi-factor function to reward the agent keeping a balance between frame usage and accuracy. Extensive experiments on three large-scale datasets prove the effectiveness of RASNet, e.g., achieving 85.9% accuracy with fewer 1.15 frames than other state-of-the-art methods on Kinetics 600.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing video-based posture recognition methods treat frames equally using unified or random sampling strategies, thus losing the temporal relationship information among frames. To address this problem, we propose a lightweight framework, namely RASNet, to adaptively select informative frames for recognition. Specifically, we design a video-suited exploration environment to guide the agent in learning the selection strategy. We introduce the reparametrization method to convert the discrete action space into a continuous space, making the agent robust and random. For the reward part, we design a multi-factor function to reward the agent keeping a balance between frame usage and accuracy. Extensive experiments on three large-scale datasets prove the effectiveness of RASNet, e.g., achieving 85.9% accuracy with fewer 1.15 frames than other state-of-the-art methods on Kinetics 600.
RASNet:基于视频的姿态识别中帧选择的强化辅助网络
现有的基于视频的姿态识别方法大多采用统一或随机采样策略对帧进行平等处理,从而丢失了帧间的时间关系信息。为了解决这个问题,我们提出了一个轻量级框架,即RASNet,来自适应地选择信息帧进行识别。具体来说,我们设计了一个适合视频的探索环境来指导智能体学习选择策略。引入重参数化方法将离散的动作空间转化为连续的动作空间,使智能体具有鲁棒性和随机性。对于奖励部分,我们设计了一个多因素函数来奖励在帧使用和精度之间保持平衡的代理。在三个大规模数据集上进行的大量实验证明了RASNet的有效性,例如,在Kinetics 600上,与其他最先进的方法相比,RASNet的准确率达到了85.9%,帧数少于1.15帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信