{"title":"RASNet: A Reinforcement Assistant Network for Frame Selection in Video-based Posture Recognition","authors":"Ruotong Hu, Xianzhi Wang, Xiaojun Chang, Yeqi Hu, Xiaowei Xin, Xiangqian Ding, Baoqi Guo","doi":"10.1109/ICME55011.2023.00366","DOIUrl":null,"url":null,"abstract":"Most existing video-based posture recognition methods treat frames equally using unified or random sampling strategies, thus losing the temporal relationship information among frames. To address this problem, we propose a lightweight framework, namely RASNet, to adaptively select informative frames for recognition. Specifically, we design a video-suited exploration environment to guide the agent in learning the selection strategy. We introduce the reparametrization method to convert the discrete action space into a continuous space, making the agent robust and random. For the reward part, we design a multi-factor function to reward the agent keeping a balance between frame usage and accuracy. Extensive experiments on three large-scale datasets prove the effectiveness of RASNet, e.g., achieving 85.9% accuracy with fewer 1.15 frames than other state-of-the-art methods on Kinetics 600.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing video-based posture recognition methods treat frames equally using unified or random sampling strategies, thus losing the temporal relationship information among frames. To address this problem, we propose a lightweight framework, namely RASNet, to adaptively select informative frames for recognition. Specifically, we design a video-suited exploration environment to guide the agent in learning the selection strategy. We introduce the reparametrization method to convert the discrete action space into a continuous space, making the agent robust and random. For the reward part, we design a multi-factor function to reward the agent keeping a balance between frame usage and accuracy. Extensive experiments on three large-scale datasets prove the effectiveness of RASNet, e.g., achieving 85.9% accuracy with fewer 1.15 frames than other state-of-the-art methods on Kinetics 600.