Modality-Fusion Spiking Transformer Network for Audio-Visual Zero-Shot Learning

Wenrui Li, Zhengyu Ma, Liang-Jian Deng, Hengyu Man, Xiaopeng Fan
{"title":"Modality-Fusion Spiking Transformer Network for Audio-Visual Zero-Shot Learning","authors":"Wenrui Li, Zhengyu Ma, Liang-Jian Deng, Hengyu Man, Xiaopeng Fan","doi":"10.1109/ICME55011.2023.00080","DOIUrl":null,"url":null,"abstract":"Audio-visual zero-shot learning (ZSL), which learns to classify video data from the classes not being observed during training, is challenging. In audio-visual ZSL, both semantic and temporal information from different modalities is relevant to each other. However, effectively extracting and fusing information from audio and visual remains an open challenge. In this work, we propose an Audio-Visual Modality-fusion Spiking Transformer network (AVMST) for audio-visual ZSL. To be more specific, AVMST provides a spiking neural network (SNN) module for extracting conspicuous temporal information of each modality, a cross-attention block to effectively fuse the temporal and semantic information, and a transformer reasoning module to further explore the interrelationships of fusion features. To provide robust temporal features, the spiking threshold of the SNN module is adjusted dynamically based on the semantic cues of different modalities. The generated feature map is in accordance with the zero-shot learning property thanks to our proposed spiking transformer’s ability to combine the robustness of SNN feature extraction and the precision of transformer feature inference. Extensive experiments on three benchmark audio-visual datasets (i.e., VGGSound, UCF and ActivityNet) validate that the proposed AVMST outperforms existing state-of-the-art methods by a significant margin. The code and pre-trained models are available at https://github.com/liwr-hit/ICME23_AVMST.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Audio-visual zero-shot learning (ZSL), which learns to classify video data from the classes not being observed during training, is challenging. In audio-visual ZSL, both semantic and temporal information from different modalities is relevant to each other. However, effectively extracting and fusing information from audio and visual remains an open challenge. In this work, we propose an Audio-Visual Modality-fusion Spiking Transformer network (AVMST) for audio-visual ZSL. To be more specific, AVMST provides a spiking neural network (SNN) module for extracting conspicuous temporal information of each modality, a cross-attention block to effectively fuse the temporal and semantic information, and a transformer reasoning module to further explore the interrelationships of fusion features. To provide robust temporal features, the spiking threshold of the SNN module is adjusted dynamically based on the semantic cues of different modalities. The generated feature map is in accordance with the zero-shot learning property thanks to our proposed spiking transformer’s ability to combine the robustness of SNN feature extraction and the precision of transformer feature inference. Extensive experiments on three benchmark audio-visual datasets (i.e., VGGSound, UCF and ActivityNet) validate that the proposed AVMST outperforms existing state-of-the-art methods by a significant margin. The code and pre-trained models are available at https://github.com/liwr-hit/ICME23_AVMST.
用于视听零射击学习的模态融合尖峰变压器网络
视听零射击学习(ZSL)是一种具有挑战性的学习方法,它学习从训练期间未观察到的类中分类视频数据。在视听语言中,来自不同模态的语义信息和时间信息是相互关联的。然而,有效地提取和融合视听信息仍然是一个悬而未决的挑战。在这项工作中,我们提出了一个视听模态融合的峰值变压器网络(AVMST)用于视听ZSL。具体来说,AVMST提供了一个峰值神经网络(SNN)模块用于提取各模态的显著时间信息,一个交叉注意块用于有效融合时间和语义信息,一个转换推理模块用于进一步探索融合特征之间的相互关系。为了提供鲁棒的时间特征,SNN模块的尖峰阈值根据不同模态的语义线索进行动态调整。由于我们提出的尖峰变压器能够将SNN特征提取的鲁棒性和变压器特征推理的精度结合起来,所生成的特征映射符合零射击学习特性。在三个基准视听数据集(即VGGSound, UCF和ActivityNet)上进行的大量实验验证了所提出的AVMST在很大程度上优于现有的最先进的方法。代码和预训练模型可在https://github.com/liwr-hit/ICME23_AVMST上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信