Using K-means cluster based techniques in external plagiarism detection

Rajiv Yerra, Yiu-Kai Ng
{"title":"Using K-means cluster based techniques in external plagiarism detection","authors":"Rajiv Yerra, Yiu-Kai Ng","doi":"10.1109/IC3I.2014.7019659","DOIUrl":null,"url":null,"abstract":"Text document categorization is one of the rapidly emerging research fields, where documents are identified, differentiated and classified manually or algorithmically. The paper focuses on application of automatic text document categorization in plagiarism detection domain. In today's world plagiarism has become a prime concern, especially in research and educational fields. This paper aims on the study and comparison of different methods of document categorization in external plagiarism detection. Here the primary focus is to explore the unsupervised document categorization/ clustering methods using different variations of K-means algorithm and compare it with the general N-gram based method and Vector Space Model based method. Finally the analysis and evaluation is done using data set from PAN-20131 and performance is compared based on precision, recall and efficiency in terms of time taken for algorithm execution.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Text document categorization is one of the rapidly emerging research fields, where documents are identified, differentiated and classified manually or algorithmically. The paper focuses on application of automatic text document categorization in plagiarism detection domain. In today's world plagiarism has become a prime concern, especially in research and educational fields. This paper aims on the study and comparison of different methods of document categorization in external plagiarism detection. Here the primary focus is to explore the unsupervised document categorization/ clustering methods using different variations of K-means algorithm and compare it with the general N-gram based method and Vector Space Model based method. Finally the analysis and evaluation is done using data set from PAN-20131 and performance is compared based on precision, recall and efficiency in terms of time taken for algorithm execution.
基于k均值聚类技术的外部抄袭检测
文本文档分类是一个新兴的研究领域,主要是通过人工或算法对文档进行识别、区分和分类。本文主要研究了文本自动分类在抄袭检测领域的应用。在当今世界,剽窃已经成为一个主要问题,特别是在研究和教育领域。本文旨在对外部抄袭检测中不同的文献分类方法进行研究和比较。本文的主要重点是探索使用K-means算法的不同变体的无监督文档分类/聚类方法,并将其与基于n图的通用方法和基于向量空间模型的方法进行比较。最后使用PAN-20131的数据集进行分析和评估,并根据算法执行时间的精度,召回率和效率进行性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信