Self-Similarity of Twitter Users

M. Fatemi, K. Kucher, M. Laitinen, P. Fränti
{"title":"Self-Similarity of Twitter Users","authors":"M. Fatemi, K. Kucher, M. Laitinen, P. Fränti","doi":"10.1109/SweDS53855.2021.9638288","DOIUrl":null,"url":null,"abstract":"Earlier studies have established that the (perceived) similarity of users is highly subjective and reflects more on how people respect/admire others rather than their characteristics or behavioral similarities. We study this phenomenon among Twitter users, and while confirm that it is indeed the case, we further explore the components of similarity by investigating it using data from three categories (interactions between egos and alters, profile-based activity history, and linguistic content in the messages). We use interactions as estimation for admiration and observe that it has more impact and a higher correlation to the perceived similarity than other objective measures, including similarity based on user profiles and their use of hashtags.","PeriodicalId":194514,"journal":{"name":"2021 Swedish Workshop on Data Science (SweDS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Swedish Workshop on Data Science (SweDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SweDS53855.2021.9638288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Earlier studies have established that the (perceived) similarity of users is highly subjective and reflects more on how people respect/admire others rather than their characteristics or behavioral similarities. We study this phenomenon among Twitter users, and while confirm that it is indeed the case, we further explore the components of similarity by investigating it using data from three categories (interactions between egos and alters, profile-based activity history, and linguistic content in the messages). We use interactions as estimation for admiration and observe that it has more impact and a higher correlation to the perceived similarity than other objective measures, including similarity based on user profiles and their use of hashtags.
推特用户的自相似性
早期的研究已经证实,用户的(感知到的)相似性是高度主观的,更多地反映了人们如何尊重/欣赏他人,而不是他们的特征或行为相似性。我们在Twitter用户中研究了这一现象,在确认确实如此的同时,我们进一步探索了相似性的组成部分,通过使用来自三个类别的数据进行调查(自我和改变之间的互动,基于个人资料的活动历史,以及消息中的语言内容)。我们使用互动作为钦佩的估计,并观察到它比其他客观衡量标准(包括基于用户资料及其使用标签的相似性)具有更大的影响和更高的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信