Overview of Factorisation Methods in Kalman Filtering

Asim Vodenčarević
{"title":"Overview of Factorisation Methods in Kalman Filtering","authors":"Asim Vodenčarević","doi":"10.2478/bhee-2020-0006","DOIUrl":null,"url":null,"abstract":"Abstract The paper summarises and describes the most commonly used matrix factorisation methods applied in design of the Kalman filter in order to improve computational efficiency and avoid divergence issues caused by numerical round-off and truncation errors. Some forms of the Kalman filter are more prone to the growth of numerical error sand possible divergence than other implementations. In order to prevent the algorithm’s divergence additional processing is needed and this paper discusses pros and cons of different implementations and their numerical characteristics. Numerical issues still arise in finite word length implementations of algorithms, which frequently occur in embedded systems. This paper describes algorithms based on different factorisations such as Cholesky, U-D, SVD and their basic numerical properties.","PeriodicalId":236883,"journal":{"name":"B&H Electrical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B&H Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhee-2020-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper summarises and describes the most commonly used matrix factorisation methods applied in design of the Kalman filter in order to improve computational efficiency and avoid divergence issues caused by numerical round-off and truncation errors. Some forms of the Kalman filter are more prone to the growth of numerical error sand possible divergence than other implementations. In order to prevent the algorithm’s divergence additional processing is needed and this paper discusses pros and cons of different implementations and their numerical characteristics. Numerical issues still arise in finite word length implementations of algorithms, which frequently occur in embedded systems. This paper describes algorithms based on different factorisations such as Cholesky, U-D, SVD and their basic numerical properties.
卡尔曼滤波中因子分解方法综述
摘要为了提高卡尔曼滤波器的计算效率,避免数值舍入误差和截断误差引起的发散问题,本文总结和描述了卡尔曼滤波器设计中最常用的矩阵分解方法。某些形式的卡尔曼滤波比其他实现更容易产生数值误差的增长和可能的发散。为了防止算法的发散,需要进行额外的处理,本文讨论了不同实现的优缺点及其数值特性。在有限字长算法的实现中仍然会出现数值问题,这在嵌入式系统中经常发生。本文介绍了基于Cholesky、U-D、SVD等不同分解的算法及其基本数值性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信