A Convolutional Neural Network with Dynamic Correlation Pooling

Junfeng Chen, Zhoudong Hua, Jingyu Wang, Shi Cheng
{"title":"A Convolutional Neural Network with Dynamic Correlation Pooling","authors":"Junfeng Chen, Zhoudong Hua, Jingyu Wang, Shi Cheng","doi":"10.1109/CIS.2017.00115","DOIUrl":null,"url":null,"abstract":"A dynamic correlation pooling method is proposed based on Mahalanobis distance to improve the accuracy of image recognition. The proposed correlation technique employs the correlation information between adjacent pixels of the image and is applied to Lenet-5 convolution neural network model, the performance of which is tested on data sets of MMIST, USPS and CIFAR-10, respectively. The empirical studies show that the proposed pooling method can improve the convergence rate and recognition accuracy in comparison with the max pooling, average pooling, stochastic pooling and mixed pooling.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A dynamic correlation pooling method is proposed based on Mahalanobis distance to improve the accuracy of image recognition. The proposed correlation technique employs the correlation information between adjacent pixels of the image and is applied to Lenet-5 convolution neural network model, the performance of which is tested on data sets of MMIST, USPS and CIFAR-10, respectively. The empirical studies show that the proposed pooling method can improve the convergence rate and recognition accuracy in comparison with the max pooling, average pooling, stochastic pooling and mixed pooling.
具有动态关联池的卷积神经网络
为了提高图像识别的精度,提出了一种基于马氏距离的动态关联池化方法。所提出的相关技术利用图像相邻像素间的相关信息,将其应用于Lenet-5卷积神经网络模型,分别在MMIST、USPS和CIFAR-10数据集上进行了性能测试。实证研究表明,与最大池化、平均池化、随机池化和混合池化方法相比,所提出的池化方法可以提高收敛速度和识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信