Template Matching Based Probabilistic Optical Character Recognition for Urdu Nastaliq Script

Qaiser Abbas
{"title":"Template Matching Based Probabilistic Optical Character Recognition for Urdu Nastaliq Script","authors":"Qaiser Abbas","doi":"10.54692/lgurjcsit.2021.0502207","DOIUrl":null,"url":null,"abstract":"This paper presents a technique for optical recognition of Urdu characters using template matching based on a probabilistic N-Gram language model. Dataset used has the collection of both printed and typed text. This model is able to perform three types of segmentations including line, ligature and character using horizontal projection, connected component labeling, corners and pointers techniques, respectively. A separate stochastic lexicon is built from a collected corpus, which contains the probability values of grams. By using template matching and the N-Gram language model, our study predicts complete segmented words with the promising result, particularly in case of bigrams. It outperforms three out of four existing models with an accuracy rate of 97.33%. Results achieved on our test dataset are encouraging in one perspective but provide direction to work for further improvement in this model.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2021.0502207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a technique for optical recognition of Urdu characters using template matching based on a probabilistic N-Gram language model. Dataset used has the collection of both printed and typed text. This model is able to perform three types of segmentations including line, ligature and character using horizontal projection, connected component labeling, corners and pointers techniques, respectively. A separate stochastic lexicon is built from a collected corpus, which contains the probability values of grams. By using template matching and the N-Gram language model, our study predicts complete segmented words with the promising result, particularly in case of bigrams. It outperforms three out of four existing models with an accuracy rate of 97.33%. Results achieved on our test dataset are encouraging in one perspective but provide direction to work for further improvement in this model.
基于模板匹配的乌尔都纳斯塔利克文字概率光学字符识别
提出了一种基于概率N-Gram语言模型的模板匹配乌尔都语字符光学识别技术。使用的数据集包含打印和键入文本的集合。该模型能够执行三种类型的分割,包括线,线和字符分别使用水平投影,连接组件标记,角和指针技术。从收集到的语料库中构建一个单独的随机词典,其中包含克的概率值。通过模板匹配和N-Gram语言模型,我们的研究预测了完整的分词,并取得了令人满意的结果,特别是在双元词的情况下。它以97.33%的准确率优于现有四种模型中的三种。在我们的测试数据集上取得的结果在一个角度上是令人鼓舞的,但为该模型的进一步改进提供了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信