Fast adaptive PARAFAC decomposition algorithm with linear complexity

V. Nguyen, K. Abed-Meraim, N. Linh-Trung
{"title":"Fast adaptive PARAFAC decomposition algorithm with linear complexity","authors":"V. Nguyen, K. Abed-Meraim, N. Linh-Trung","doi":"10.1109/ICASSP.2016.7472876","DOIUrl":null,"url":null,"abstract":"We present a fast adaptive PARAFAC decomposition algorithm with low computational complexity. The proposed algorithm generalizes the Orthonormal Projection Approximation Subspace Tracking (OPAST) approach for tracking a class of third-order tensors which have one dimension growing with time. It has linear complexity, good convergence rate and good estimation accuracy. To deal with large-scale problems, a parallel implementation can be applied to reduce both computational complexity and storage. We illustrate the effectiveness of our algorithm in comparison with the state-of-the-art algorithms through simulation experiments.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"720 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a fast adaptive PARAFAC decomposition algorithm with low computational complexity. The proposed algorithm generalizes the Orthonormal Projection Approximation Subspace Tracking (OPAST) approach for tracking a class of third-order tensors which have one dimension growing with time. It has linear complexity, good convergence rate and good estimation accuracy. To deal with large-scale problems, a parallel implementation can be applied to reduce both computational complexity and storage. We illustrate the effectiveness of our algorithm in comparison with the state-of-the-art algorithms through simulation experiments.
具有线性复杂度的快速自适应PARAFAC分解算法
提出了一种计算复杂度低的快速自适应PARAFAC分解算法。针对一类一维随时间增长的三阶张量,推广了正交投影逼近子空间跟踪(OPAST)方法。它具有线性复杂度、良好的收敛速度和较好的估计精度。为了处理大规模问题,可以采用并行实现来降低计算复杂度和存储空间。我们通过仿真实验说明了我们的算法与最先进的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信