Instanton Floer homology of almost-rational plumbings

Antonio Alfieri, John A. Baldwin, Irving Dai, Steven Sivek
{"title":"Instanton Floer homology of almost-rational plumbings","authors":"Antonio Alfieri, John A. Baldwin, Irving Dai, Steven Sivek","doi":"10.2140/gt.2022.26.2237","DOIUrl":null,"url":null,"abstract":"We show that if $Y$ is the boundary of an almost-rational plumbing, then the framed instanton Floer homology $\\smash{I^\\#(Y)}$ is isomorphic to the Heegaard Floer homology $\\smash{\\widehat{\\mathit{HF}}(Y; \\mathbb{C})}$. This class of 3-manifolds includes all Seifert fibered rational homology spheres with base orbifold $S^2$ (we establish the isomorphism for the remaining Seifert fibered rational homology spheres$\\unicode{x2014}$with base $\\mathbb{RP}^2$$\\unicode{x2014}$directly). Our proof utilizes lattice homology, and relies on a decomposition theorem for instanton Floer cobordism maps recently established by Baldwin and Sivek.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We show that if $Y$ is the boundary of an almost-rational plumbing, then the framed instanton Floer homology $\smash{I^\#(Y)}$ is isomorphic to the Heegaard Floer homology $\smash{\widehat{\mathit{HF}}(Y; \mathbb{C})}$. This class of 3-manifolds includes all Seifert fibered rational homology spheres with base orbifold $S^2$ (we establish the isomorphism for the remaining Seifert fibered rational homology spheres$\unicode{x2014}$with base $\mathbb{RP}^2$$\unicode{x2014}$directly). Our proof utilizes lattice homology, and relies on a decomposition theorem for instanton Floer cobordism maps recently established by Baldwin and Sivek.
几乎有理管道的瞬时花同源性
我们证明了如果$Y$是一个几乎理性管道的边界,那么框架的瞬时花同构$\smash{I^\#(Y)}$与Heegaard花同构$\smash{\widehat{\mathit{HF}}(Y;C \ mathbb{})} $。这类3流形包括所有基轨道为$S^2$的Seifert纤维有理同构球(我们直接建立了其余基轨道为$\mathbb{RP}^2$$\unicode{x2014}$的Seifert纤维有理同构球$\unicode{x2014}$的同构)。我们的证明利用了格同调,并依赖于Baldwin和Sivek最近建立的一个关于瞬子Floer协同映射的分解定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信