Global-Scale Secure Multiparty Computation

X. Wang, Samuel Ranellucci, Jonathan Katz
{"title":"Global-Scale Secure Multiparty Computation","authors":"X. Wang, Samuel Ranellucci, Jonathan Katz","doi":"10.1145/3133956.3133979","DOIUrl":null,"url":null,"abstract":"We propose a new, constant-round protocol for multi-party computation of boolean circuits that is secure against an arbitrary number of malicious corruptions. At a high level, we extend and generalize recent work of Wang et al. in the two-party setting. Namely, we design an efficient preprocessing phase that allows the parties to generate authenticated information; we then show how to use this information to distributively construct a single \"authenticated\" garbled circuit that is evaluated by one party. Our resulting protocol improves upon the state-of-the-art both asymptotically and concretely. We validate these claims via several experiments demonstrating both the efficiency and scalability of our protocol: Efficiency: For three-party computation over a LAN, our protocol requires only 95 ms to evaluate AES. This is roughly a 700X improvement over the best prior work, and only 2.5X slower than the best known result in the two-party setting. In general, for n-party computation our protocol improves upon prior work (which was never implemented) by a factor of more than 230n, e.g., an improvement of 3 orders of magnitude for 5-party computation. Scalability: We successfully executed our protocol with a large number of parties located all over the world, computing (for example) AES with 128 parties across 5 continents in under 3 minutes. Our work represents the largest-scale demonstration of secure computation to date.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3133979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

Abstract

We propose a new, constant-round protocol for multi-party computation of boolean circuits that is secure against an arbitrary number of malicious corruptions. At a high level, we extend and generalize recent work of Wang et al. in the two-party setting. Namely, we design an efficient preprocessing phase that allows the parties to generate authenticated information; we then show how to use this information to distributively construct a single "authenticated" garbled circuit that is evaluated by one party. Our resulting protocol improves upon the state-of-the-art both asymptotically and concretely. We validate these claims via several experiments demonstrating both the efficiency and scalability of our protocol: Efficiency: For three-party computation over a LAN, our protocol requires only 95 ms to evaluate AES. This is roughly a 700X improvement over the best prior work, and only 2.5X slower than the best known result in the two-party setting. In general, for n-party computation our protocol improves upon prior work (which was never implemented) by a factor of more than 230n, e.g., an improvement of 3 orders of magnitude for 5-party computation. Scalability: We successfully executed our protocol with a large number of parties located all over the world, computing (for example) AES with 128 parties across 5 continents in under 3 minutes. Our work represents the largest-scale demonstration of secure computation to date.
全球规模安全多方计算
我们提出了一种新的、用于布尔电路多方计算的恒轮协议,该协议可以防止任意数量的恶意破坏。在高层次上,我们扩展和概括了Wang等人在两方背景下的最新工作。也就是说,我们设计了一个有效的预处理阶段,允许各方生成经过认证的信息;然后,我们将展示如何使用这些信息来分布式地构建由一方评估的单个“经过身份验证的”乱码电路。我们的最终协议在渐进和具体两方面都改进了最先进的技术。我们通过几个实验验证了我们协议的效率和可扩展性:效率:对于局域网上的三方计算,我们的协议只需要95毫秒来评估AES。这比之前最好的工作大约提高了700倍,只比双方设置中最知名的结果慢2.5倍。一般来说,对于n方计算,我们的协议在先前工作(从未实现)的基础上提高了230n以上,例如,对于5方计算提高了3个数量级。可扩展性:我们成功地与世界各地的大量各方执行了我们的协议,在3分钟内计算出(例如)横跨5大洲的128个各方的AES。我们的工作代表了迄今为止最大规模的安全计算演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信