Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization

Max Nelson
{"title":"Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization","authors":"Max Nelson","doi":"10.18653/v1/2020.sigmorphon-1.27","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.
基于约束优化的梯度符号计算中约束权值与梯度输入的联合学习
在梯度符号计算(GSC)框架下,提出了一种约束权重和符号激活的联合优化方法。证明了GSC中可表示的语法集是具有词汇尺度忠实约束的可表示语法集的子集。然后利用这一事实将GSC中的学习约束权重和符号激活问题重新定义为学习词汇尺度忠实语法的二次约束版本。这导致了一个优化问题,可以用顺序二次规划来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信