Clustering Techniques for Traffic Classification: A Comprehensive Review

Kate Takyi, Amandeep Bagga, Pooja Goopta
{"title":"Clustering Techniques for Traffic Classification: A Comprehensive Review","authors":"Kate Takyi, Amandeep Bagga, Pooja Goopta","doi":"10.1109/ICRITO.2018.8748772","DOIUrl":null,"url":null,"abstract":"The threat of malicious content on a network requires network administrators and users to accurately detect desirable traffic flow into their respective networks. To this effect, several studies have found it imperative to classify traffic flow, and to use traffic classification in various applications such as intrusion detection, monitoring systems, as well as pattern detection in various networks. Research into machine learning techniques of clustering emerged due to the inefficiencies and drawbacks of the traditional port-based and payload-based schemes. The classic K-means technique of clustering, in combination with other methods and parameters, can be used to build newer unsupervised and semi-supervised approaches to meliorate the quality of service in networks. In this paper, we review twelve of the existing clustering techniques. The review covers their contribution to clustering methods, the existing challenges, as well as recommendations for further research in clustering traffic flows.","PeriodicalId":439047,"journal":{"name":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2018.8748772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The threat of malicious content on a network requires network administrators and users to accurately detect desirable traffic flow into their respective networks. To this effect, several studies have found it imperative to classify traffic flow, and to use traffic classification in various applications such as intrusion detection, monitoring systems, as well as pattern detection in various networks. Research into machine learning techniques of clustering emerged due to the inefficiencies and drawbacks of the traditional port-based and payload-based schemes. The classic K-means technique of clustering, in combination with other methods and parameters, can be used to build newer unsupervised and semi-supervised approaches to meliorate the quality of service in networks. In this paper, we review twelve of the existing clustering techniques. The review covers their contribution to clustering methods, the existing challenges, as well as recommendations for further research in clustering traffic flows.
流量分类的聚类技术综述
网络上恶意内容的威胁需要网络管理员和用户准确检测进入各自网络的理想流量。为此,一些研究发现必须对交通流进行分类,并在各种应用中使用流量分类,如入侵检测、监控系统以及各种网络中的模式检测。由于传统的基于端口和基于有效负载的方案效率低下和存在缺陷,出现了聚类机器学习技术的研究。经典的K-means聚类技术,结合其他方法和参数,可以用来构建新的无监督和半监督方法,以改善网络中的服务质量。本文综述了现有的12种聚类技术。综述了它们对聚类方法的贡献、存在的挑战以及对交通流聚类进一步研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信