Many-core architectures boost the pricing of basket options on adaptive sparse grids

A. Heinecke, J. Jepsen, H. Bungartz
{"title":"Many-core architectures boost the pricing of basket options on adaptive sparse grids","authors":"A. Heinecke, J. Jepsen, H. Bungartz","doi":"10.1145/2535557.2535560","DOIUrl":null,"url":null,"abstract":"In this work, we present a highly scalable approach for numerically solving the Black-Scholes PDE in order to price basket options. Our method is based on a spatially adaptive sparse-grid discretization with finite elements. Since we cannot unleash the compute capabilities of modern many-core chips such as GPUs using the complexity-optimal Up-Down method, we implemented an embarrassingly parallel direct method. This operator is paired with a distributed memory parallelization using MPI and we achieved very good scalability results compared to the standard Up-Down approach. Since we exploit all levels of the operator's parallelism, we are able to achieve nearly perfect strong scaling for the Black-Scholes solver. Our results show that typical problem sizes (5 dimensional basket options), require at least 4 NVIDIA K20X Kepler GPUs (inside a Cray XK7) in order to be faster than the Up-Down scheme running on 16 Intel Sandy Bridge cores (one box). On a Cray XK7 machine we outperform our highly parallel Up-Down implementation by 55X with respect to time to solution. Both results emphasize the competitiveness of our proposed operator.","PeriodicalId":241950,"journal":{"name":"High Performance Computational Finance","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535557.2535560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we present a highly scalable approach for numerically solving the Black-Scholes PDE in order to price basket options. Our method is based on a spatially adaptive sparse-grid discretization with finite elements. Since we cannot unleash the compute capabilities of modern many-core chips such as GPUs using the complexity-optimal Up-Down method, we implemented an embarrassingly parallel direct method. This operator is paired with a distributed memory parallelization using MPI and we achieved very good scalability results compared to the standard Up-Down approach. Since we exploit all levels of the operator's parallelism, we are able to achieve nearly perfect strong scaling for the Black-Scholes solver. Our results show that typical problem sizes (5 dimensional basket options), require at least 4 NVIDIA K20X Kepler GPUs (inside a Cray XK7) in order to be faster than the Up-Down scheme running on 16 Intel Sandy Bridge cores (one box). On a Cray XK7 machine we outperform our highly parallel Up-Down implementation by 55X with respect to time to solution. Both results emphasize the competitiveness of our proposed operator.
多核架构提高了自适应稀疏网格上篮子期权的定价
在这项工作中,我们提出了一种高度可扩展的方法来数值求解Black-Scholes PDE,以便为篮子期权定价。该方法基于空间自适应稀疏网格有限元离散化。由于我们无法使用复杂度最优的上下方法来释放现代多核芯片(如gpu)的计算能力,因此我们实现了一种令人尴尬的并行直接方法。该操作符与使用MPI的分布式内存并行化配对,与标准的Up-Down方法相比,我们获得了非常好的可伸缩性结果。由于我们利用了所有级别的运算符的并行性,我们能够为Black-Scholes解算器实现几乎完美的强缩放。我们的结果表明,典型的问题规模(5维篮子选项),需要至少4个NVIDIA K20X Kepler gpu(在Cray XK7中)才能比在16个Intel Sandy Bridge内核(一个盒子)上运行的Up-Down方案更快。在Cray XK7机器上,我们在解决方案的时间上比我们高度并行的上下实现高出55倍。这两个结果都强调了我们提出的运营商的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信