Efficient Hidden Trajectory Reconstruction from Sparse Data

Ning Yang, Philip S. Yu
{"title":"Efficient Hidden Trajectory Reconstruction from Sparse Data","authors":"Ning Yang, Philip S. Yu","doi":"10.1145/2983323.2983796","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of reconstructing hidden trajectories from a collective of separate spatial-temporal points without ID information, given the number of hidden trajectories. The challenge is three-fold: lack of meaningful features, data sparsity, and missing trajectory links. We propose a novel approach called Hidden Trajectory Reconstruction (HTR). From an information-theoretic perspective, we devise five novel temporal features and combine them into an Latent Spatial-Temporal Feature Vector (LSTFV) to characterize the dynamics of a single spatial-temporal point. The proposed features have the potential of distinguishing spatial-temporal points between trajectories. To overcome the data sparsity, we assemble the LSTFVs to a sparse Temporal Feature Tensor (TF-Tensor) and propose an algorithm called Parallel Iterative Collaborative Approximation of Sparse Tensor (PICAST). PICAST approximates the TF-Tensor by decomposing it into a tensor product of a low-rank core identity tensor and three dense factor matrices with a divide-and-conquer strategy. To achieve a dense approximate tensor with good accuracy and efficiency, PICAST minimizes a sparsity-measure and fuses an additional matrix of static geographical region features. To recover the missing trajectory links, we propose a mapping, Cross-Temporal Connectivity Preserving Transformation (CTCPT), to map the LSTFVs of the separate spatial-temporal points to an intrinsic space called Cross-Temporal Connectivity Preserving Space (CTCPS). CTCPT uses Cross-Temporal Connectivity (CTC) to evaluate whether two spatial-temporal points belong to the same trajectory and if they do, how strong the connectivity between them is. Due to the CTCPT, the hidden trajectories can be reconstructed from clusters generated in CTCPS by a clustering algorithm. At last, the extensive experiments conducted on synthetic datasets and real datasets verify the effectiveness and efficiency of our algorithms.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we investigate the problem of reconstructing hidden trajectories from a collective of separate spatial-temporal points without ID information, given the number of hidden trajectories. The challenge is three-fold: lack of meaningful features, data sparsity, and missing trajectory links. We propose a novel approach called Hidden Trajectory Reconstruction (HTR). From an information-theoretic perspective, we devise five novel temporal features and combine them into an Latent Spatial-Temporal Feature Vector (LSTFV) to characterize the dynamics of a single spatial-temporal point. The proposed features have the potential of distinguishing spatial-temporal points between trajectories. To overcome the data sparsity, we assemble the LSTFVs to a sparse Temporal Feature Tensor (TF-Tensor) and propose an algorithm called Parallel Iterative Collaborative Approximation of Sparse Tensor (PICAST). PICAST approximates the TF-Tensor by decomposing it into a tensor product of a low-rank core identity tensor and three dense factor matrices with a divide-and-conquer strategy. To achieve a dense approximate tensor with good accuracy and efficiency, PICAST minimizes a sparsity-measure and fuses an additional matrix of static geographical region features. To recover the missing trajectory links, we propose a mapping, Cross-Temporal Connectivity Preserving Transformation (CTCPT), to map the LSTFVs of the separate spatial-temporal points to an intrinsic space called Cross-Temporal Connectivity Preserving Space (CTCPS). CTCPT uses Cross-Temporal Connectivity (CTC) to evaluate whether two spatial-temporal points belong to the same trajectory and if they do, how strong the connectivity between them is. Due to the CTCPT, the hidden trajectories can be reconstructed from clusters generated in CTCPS by a clustering algorithm. At last, the extensive experiments conducted on synthetic datasets and real datasets verify the effectiveness and efficiency of our algorithms.
基于稀疏数据的高效隐藏轨迹重建
在本文中,我们研究了在给定隐藏轨迹数量的情况下,从一组没有ID信息的独立时空点重构隐藏轨迹的问题。挑战有三个方面:缺乏有意义的特征、数据稀疏性和缺少轨迹链接。我们提出了一种新的方法,称为隐藏轨迹重建(HTR)。从信息论的角度出发,我们设计了五个新的时间特征,并将它们组合成一个潜在时空特征向量(LSTFV)来表征单个时空点的动态。所提出的特征具有在轨迹之间区分时空点的潜力。为了克服数据稀疏性,我们将lstfv集合成一个稀疏的时间特征张量(TF-Tensor),并提出了一种称为稀疏张量并行迭代协同逼近(PICAST)的算法。PICAST将tf张量分解为一个低秩核心单位张量和三个密集因子矩阵的张量积,采用分治策略逼近tf张量。为了获得具有良好精度和效率的密集近似张量,PICAST最小化了稀疏度量并融合了静态地理区域特征的附加矩阵。为了恢复缺失的轨迹链接,我们提出了一种映射,即跨时间连通性保持变换(CTCPT),将单独时空点的lstfv映射到一个称为跨时间连通性保持空间(CTCPS)的固有空间。CTCPT使用跨时间连通性(Cross-Temporal Connectivity, CTC)来评估两个时空点是否属于同一轨迹,如果属于,它们之间的连通性有多强。由于CTCPT,隐藏轨迹可以通过聚类算法从CTCPS中生成的聚类中重建出来。最后,在合成数据集和真实数据集上进行了大量的实验,验证了算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信