Adaptive Performance Prediction for Distributed Data-Intensive Applications

M. Faerman, Alan Su, R. Wolski, F. Berman
{"title":"Adaptive Performance Prediction for Distributed Data-Intensive Applications","authors":"M. Faerman, Alan Su, R. Wolski, F. Berman","doi":"10.1145/331532.331568","DOIUrl":null,"url":null,"abstract":"The computational grid is becoming the platform of choice for large-scale distributed data-intensive applications. Accurately predicting the transfer times of remote data files, a fundamental component of such applications, is critical to achieving application performance. In this paper, we introduce a performance prediction method, AdRM (Adaptive Regression Modeling), to determine file transfer times for network-bound distributed data-intensive applications. We demonstrate the effectiveness of the AdRM method on two distributed data applications, SARA (Synthetic Aperture Radar Atlas) and SRB (Storage Resource Broker), and discuss how it can be used for application scheduling. Our experiments use the Network Weather Service [36, 37], a resource performance measurement and forecasting facility, as a basis for the performance prediction model. Our initial findings indicate that the AdRM method can be effective in accurately predicting data transfer times in wide-area multi-user grid environments.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

The computational grid is becoming the platform of choice for large-scale distributed data-intensive applications. Accurately predicting the transfer times of remote data files, a fundamental component of such applications, is critical to achieving application performance. In this paper, we introduce a performance prediction method, AdRM (Adaptive Regression Modeling), to determine file transfer times for network-bound distributed data-intensive applications. We demonstrate the effectiveness of the AdRM method on two distributed data applications, SARA (Synthetic Aperture Radar Atlas) and SRB (Storage Resource Broker), and discuss how it can be used for application scheduling. Our experiments use the Network Weather Service [36, 37], a resource performance measurement and forecasting facility, as a basis for the performance prediction model. Our initial findings indicate that the AdRM method can be effective in accurately predicting data transfer times in wide-area multi-user grid environments.
分布式数据密集型应用的自适应性能预测
计算网格正在成为大规模分布式数据密集型应用程序的首选平台。准确预测远程数据文件的传输时间(这是此类应用程序的一个基本组件)对于实现应用程序性能至关重要。在本文中,我们介绍了一种性能预测方法,AdRM(自适应回归模型),以确定网络绑定分布式数据密集型应用程序的文件传输时间。我们在两个分布式数据应用SARA(合成孔径雷达图集)和SRB(存储资源代理)上展示了AdRM方法的有效性,并讨论了如何将其用于应用程序调度。我们的实验使用网络天气服务[36,37],这是一种资源性能测量和预测工具,作为性能预测模型的基础。我们的初步研究结果表明,AdRM方法可以有效地准确预测广域多用户网格环境下的数据传输时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信