Text Mining untuk Pengelompokan Skripsi di Prodi Pendidikan Informatika Universitas Trunojoyo Madura

Laili Cahyani, Muchamad Arif
{"title":"Text Mining untuk Pengelompokan Skripsi di Prodi Pendidikan Informatika Universitas Trunojoyo Madura","authors":"Laili Cahyani, Muchamad Arif","doi":"10.21107/edutic.v8i2.13020","DOIUrl":null,"url":null,"abstract":"Skripsi merupakan karya tulis ilmiah mahasiswa sebagai syarat kelulusan atau perolehan gelar sarjana. Meskipun demikian, dosen juga berperan aktif dalam mengarahkan penentuan topik skripsi sebagai pembimbing. Skripsi yang ideal mengacu pada topik – topik yang up to date. Hendaknya skripsi juga mendukung keberhasilan rencana induk penelitian (RIP) Universitas bahkan rencana induk riset nasional (RIRN). Selain itu, topik skripsi harus selaras dengan bidang minat sesuai kurikulum program studi. Untuk itu, perlu adanya penyelarasan antara kondisi universitas, kebutuhan masyarakat, dan tujuan nasional. Sehingga, analisis data skripsi diperlukan untuk tujuan tersebut. Selama ini data dokumen skripsi di Program Studi Pendidikan Informatika Universitas Trunojoyo Madura belum terorganisir dengan baik di lingkup Program Studi. Sedangkan, jumlah data terus meningkat. Hal itu menjadi tantangan dalam pencarian dan penentuan topik skripsi sebagai bahan referensi selanjutnya. Selain itu, hingga saat ini belum dilakukan analisis terkait berkembangan skripsi yang sudah ada. Belum dilakukan juga pemetaan atau pengelompokan skripsi. Sehingga, dapat memberikan peluang adanya kemiripan skripsi. Oleh karena itu, dikembangkan sistem pengelompokan skripsi menggunakan text mining (studi kasus Program Studi Pendidikan Informatika Universitas Trunojoyo Madura). Dengan adanya sistem tersebut, diharapkan dapat membantu manajemen pengelolahan data skripsi bagi bidang skripsi di Program Studi. Sehingga dapat membantu dalam penentuan kebijakan dosen pembimbing dan meminimalisir peluang adanya kemiripan topic skripsi. Hasil penelitian ini menunjukkan bahwa metode clustering menggunakan K-Means dapat melakukan pengelompokan topic skripsi secara optimal dengan nilai akurasi sebesar 0,972972973, nilai presisi sebesar 916666667, nilai recall sebesar 0,9849199722, dan F-Measure sebesar 0,949199722 dalam skala 0 – 1.","PeriodicalId":185202,"journal":{"name":"Jurnal Ilmiah Edutic : Pendidikan dan Informatika","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Edutic : Pendidikan dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/edutic.v8i2.13020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Skripsi merupakan karya tulis ilmiah mahasiswa sebagai syarat kelulusan atau perolehan gelar sarjana. Meskipun demikian, dosen juga berperan aktif dalam mengarahkan penentuan topik skripsi sebagai pembimbing. Skripsi yang ideal mengacu pada topik – topik yang up to date. Hendaknya skripsi juga mendukung keberhasilan rencana induk penelitian (RIP) Universitas bahkan rencana induk riset nasional (RIRN). Selain itu, topik skripsi harus selaras dengan bidang minat sesuai kurikulum program studi. Untuk itu, perlu adanya penyelarasan antara kondisi universitas, kebutuhan masyarakat, dan tujuan nasional. Sehingga, analisis data skripsi diperlukan untuk tujuan tersebut. Selama ini data dokumen skripsi di Program Studi Pendidikan Informatika Universitas Trunojoyo Madura belum terorganisir dengan baik di lingkup Program Studi. Sedangkan, jumlah data terus meningkat. Hal itu menjadi tantangan dalam pencarian dan penentuan topik skripsi sebagai bahan referensi selanjutnya. Selain itu, hingga saat ini belum dilakukan analisis terkait berkembangan skripsi yang sudah ada. Belum dilakukan juga pemetaan atau pengelompokan skripsi. Sehingga, dapat memberikan peluang adanya kemiripan skripsi. Oleh karena itu, dikembangkan sistem pengelompokan skripsi menggunakan text mining (studi kasus Program Studi Pendidikan Informatika Universitas Trunojoyo Madura). Dengan adanya sistem tersebut, diharapkan dapat membantu manajemen pengelolahan data skripsi bagi bidang skripsi di Program Studi. Sehingga dapat membantu dalam penentuan kebijakan dosen pembimbing dan meminimalisir peluang adanya kemiripan topic skripsi. Hasil penelitian ini menunjukkan bahwa metode clustering menggunakan K-Means dapat melakukan pengelompokan topic skripsi secara optimal dengan nilai akurasi sebesar 0,972972973, nilai presisi sebesar 916666667, nilai recall sebesar 0,9849199722, dan F-Measure sebesar 0,949199722 dalam skala 0 – 1.
特伦奥约约·马杜拉大学信息专案论文撰写摘要的文本
论文是学生为毕业或获得学位的先决条件而写的科学论文。然而,讲师在指导论文的主题方面也发挥了积极的作用。理想的论文是关于一个主题的——一个最新的主题。论文也应该支持大学总体研究计划(RIP)的成功,甚至国家研究计划(RIRN)。此外,论文的主题应符合课程研究课程的兴趣领域。这需要在大学条件、社区需求和国家目标之间建立协调。因此,写作数据分析是必要的。特伦奥约约·马杜拉大学信息教育研究项目的论文数据一直没有很好地组织在该研究领域。然而,数据的数量一直在增加。这将成为寻找和确定论文主题作为进一步参考的挑战。此外,目前还没有对现有的解释方式进行分析。未完成的映射或分组的论文。这样,就有可能存在与论文相似的地方。因此,开发了一种使用文本mining (Trunojoyo Madura大学信息教育项目案例研究)的论文分组系统。由于该系统的存在,预计将有助于管理写作项目的写作领域。因此,它有助于顾问确定政策,并尽量减少写作与主题相似的机会。研究结果表明,对k -手段的集合体方法可以以0.972972973的最佳精度为916666667,精度为99849199722,F-Measure值为0 - 1级为0.94997722。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信