Parameter Estimation Optimization Based on Genetic Algorithm Applied to DC Motor

M. Lankarany, A. Rezazade
{"title":"Parameter Estimation Optimization Based on Genetic Algorithm Applied to DC Motor","authors":"M. Lankarany, A. Rezazade","doi":"10.1109/ICEE.2007.4287313","DOIUrl":null,"url":null,"abstract":"Thin paper proposed the application of genetic algorithm optimization in estimating the parameters of dynamic state of DC motor. LSE estimation is considered as a convenient method for parameter estimation, in comparison with this proposed method. Despite of LSE estimation that is based on the linearity of error function due to parameters, GA method can easily identify unknown parameters by minimizing the sum of squared errors. GA is imported in comparison with conventional optimization methods because of its power in searching entire solution space with more probability of finding the global optimum. Also the model can be nonlinear with respect to parameters, and in this identification free noise system is assumed and transient excitation is considered instead of persistent excitation. Finally comparison between LSE and GA optimization is presented to indicate robustness and resolution of GA identification method in parameter estimation.","PeriodicalId":291800,"journal":{"name":"2007 International Conference on Electrical Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE.2007.4287313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Thin paper proposed the application of genetic algorithm optimization in estimating the parameters of dynamic state of DC motor. LSE estimation is considered as a convenient method for parameter estimation, in comparison with this proposed method. Despite of LSE estimation that is based on the linearity of error function due to parameters, GA method can easily identify unknown parameters by minimizing the sum of squared errors. GA is imported in comparison with conventional optimization methods because of its power in searching entire solution space with more probability of finding the global optimum. Also the model can be nonlinear with respect to parameters, and in this identification free noise system is assumed and transient excitation is considered instead of persistent excitation. Finally comparison between LSE and GA optimization is presented to indicate robustness and resolution of GA identification method in parameter estimation.
基于遗传算法的直流电动机参数估计优化
本文提出了遗传算法优化在直流电动机动态参数估计中的应用。通过与该方法的比较,认为LSE估计是一种方便的参数估计方法。尽管LSE估计是基于误差函数由于参数的线性,但遗传算法可以通过最小化误差平方和来方便地识别未知参数。与传统的优化方法相比,遗传算法具有搜索整个解空间的能力,且找到全局最优的概率更大。模型也可以是非线性的,在此辨识中假设系统是无噪声的,并考虑瞬态激励而不是持续激励。最后将LSE与遗传算法进行了比较,说明了遗传算法辨识方法在参数估计方面的鲁棒性和分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信