Towards an online detection of pedestrian flocks in urban canyons by smoothed spatio-temporal clustering of GPS trajectories

M. Wirz, P. Schläpfer, M. Kjærgaard, D. Roggen, S. Feese, G. Tröster
{"title":"Towards an online detection of pedestrian flocks in urban canyons by smoothed spatio-temporal clustering of GPS trajectories","authors":"M. Wirz, P. Schläpfer, M. Kjærgaard, D. Roggen, S. Feese, G. Tröster","doi":"10.1145/2063212.2063220","DOIUrl":null,"url":null,"abstract":"Detecting pedestrians moving together through public spaces can provide relevant information for many location-based social applications. In this work we present an online method to detect such pedestrian flocks by spatio-temporal clustering of location trajectories. Compared to prior work, our method provides increased robustness against the influence of noisy and missing GPS data often encountered in urban environments. To assess the performance of the method, we record GPS trajectories from ten subjects walking through a city. The data set contains various flock formations and corresponding ground truth information is available. With this data set, we can evaluate the accuracy of our method to detect flocks. Results show that we can detect flocks and their members with an accuracy of 91.3%. We evaluate the influence of noisy and missing location data on the detection accuracy and show that the introduced filtering heuristics provides increased detection accuracy in such realistic situations.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063212.2063220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Detecting pedestrians moving together through public spaces can provide relevant information for many location-based social applications. In this work we present an online method to detect such pedestrian flocks by spatio-temporal clustering of location trajectories. Compared to prior work, our method provides increased robustness against the influence of noisy and missing GPS data often encountered in urban environments. To assess the performance of the method, we record GPS trajectories from ten subjects walking through a city. The data set contains various flock formations and corresponding ground truth information is available. With this data set, we can evaluate the accuracy of our method to detect flocks. Results show that we can detect flocks and their members with an accuracy of 91.3%. We evaluate the influence of noisy and missing location data on the detection accuracy and show that the introduced filtering heuristics provides increased detection accuracy in such realistic situations.
基于GPS轨迹平滑时空聚类的城市峡谷行人群在线检测研究
检测行人在公共空间中一起移动,可以为许多基于位置的社交应用程序提供相关信息。在这项工作中,我们提出了一种在线方法,通过位置轨迹的时空聚类来检测这种行人群。与之前的工作相比,我们的方法对城市环境中经常遇到的GPS数据噪声和丢失的影响提供了更高的鲁棒性。为了评估该方法的性能,我们记录了10个受试者在城市中行走的GPS轨迹。该数据集包含各种鸟群形成,并可获得相应的地面真值信息。有了这个数据集,我们可以评估我们的方法检测禽群的准确性。结果表明,该方法能够检测出鸡群及其成员,准确率为91.3%。我们评估了噪声和缺失位置数据对检测精度的影响,并表明引入的滤波启发式方法在这种现实情况下提供了更高的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信