An adaptive on-line algorithm for independent component analysis

Xiao-ou Li, Yun Zhou, Huan-qing Feng
{"title":"An adaptive on-line algorithm for independent component analysis","authors":"Xiao-ou Li, Yun Zhou, Huan-qing Feng","doi":"10.1109/ICNNSP.2003.1281119","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive on-line algorithm whose optimization criterion is based on maximum likelihood to perform Independent Component Analysis (ICA). A fast density estimation method is introduced , it can quickly achieve the true score functions of the unknown sources by estimating from the sample. In the meantime, the careful selection of the step size is often necessary to obtain good performance for the source separation tasks. We carry out the global minimum of the contrast function with the gradient adaptive step size. The results of simulation experiment show that the provided algorithm can perform the adaptive separation of real digital signal efficiently.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1281119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an adaptive on-line algorithm whose optimization criterion is based on maximum likelihood to perform Independent Component Analysis (ICA). A fast density estimation method is introduced , it can quickly achieve the true score functions of the unknown sources by estimating from the sample. In the meantime, the careful selection of the step size is often necessary to obtain good performance for the source separation tasks. We carry out the global minimum of the contrast function with the gradient adaptive step size. The results of simulation experiment show that the provided algorithm can perform the adaptive separation of real digital signal efficiently.
独立分量分析的自适应在线算法
本文提出了一种基于最大似然进行独立分量分析的自适应在线算法。介绍了一种快速密度估计方法,通过对样本进行估计,可以快速得到未知源的真实分数函数。同时,为了使源分离任务获得良好的性能,通常需要仔细选择步长。我们用梯度自适应步长实现对比度函数的全局最小值。仿真实验结果表明,该算法能够有效地实现实际数字信号的自适应分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信