Arithmetic Semicustom VLSI Based On Module Array Structure

M. Kameyama, M. Nomura, T. Higuchi
{"title":"Arithmetic Semicustom VLSI Based On Module Array Structure","authors":"M. Kameyama, M. Nomura, T. Higuchi","doi":"10.1109/VLSIC.1991.760098","DOIUrl":null,"url":null,"abstract":"A new arithmetic VLSI array based on signed-digit(SD)[l] arithmetic module is proposed. The module is a universal building block mainly composed of an SD adder. Any arithmetic operations based on addition, subtraction and multiplication can be realized by appropriately specifying the interconnections between the modules. This module array is much more useful for design and fabrication with short turnaround time than gate array. High-speed operations can be expected in the adder-based module independently of the word length. Moreover, multiple-valued bidirectional current-mode circuits are effectively employed for the compact implementation of the SD arithmetic VLSI[2]. I1 Module array The module ( PAM ) is composed of an adder, a partial product geneIator ( PPG ), a sign inverter, two encoders and four wiring blocks ( W1, W2, W3 and W4 ) as shown in Fig. 1. One of the operation modes in the module can be selected by the specification of the wiring blocks, so that any arithmetic systems can be constructed using the modules. In order to realize a high-speed compact module, we introduce radix-4 minimum-redundant SD arithmetic system using the multiplevalued bidirectional current-mode circuits. Any arithmetic circuits can be realized by using the adder-based structure with high degree of parallelism because the carry-propagation chains are eliminated[]] in the SD arithmetic. Therefore, highof the use of the adder-based modules. speed operations can be expected in the module array in spite","PeriodicalId":319036,"journal":{"name":"1991 Symposium on VLSI Circuits","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1991 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1991.760098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new arithmetic VLSI array based on signed-digit(SD)[l] arithmetic module is proposed. The module is a universal building block mainly composed of an SD adder. Any arithmetic operations based on addition, subtraction and multiplication can be realized by appropriately specifying the interconnections between the modules. This module array is much more useful for design and fabrication with short turnaround time than gate array. High-speed operations can be expected in the adder-based module independently of the word length. Moreover, multiple-valued bidirectional current-mode circuits are effectively employed for the compact implementation of the SD arithmetic VLSI[2]. I1 Module array The module ( PAM ) is composed of an adder, a partial product geneIator ( PPG ), a sign inverter, two encoders and four wiring blocks ( W1, W2, W3 and W4 ) as shown in Fig. 1. One of the operation modes in the module can be selected by the specification of the wiring blocks, so that any arithmetic systems can be constructed using the modules. In order to realize a high-speed compact module, we introduce radix-4 minimum-redundant SD arithmetic system using the multiplevalued bidirectional current-mode circuits. Any arithmetic circuits can be realized by using the adder-based structure with high degree of parallelism because the carry-propagation chains are eliminated[]] in the SD arithmetic. Therefore, highof the use of the adder-based modules. speed operations can be expected in the module array in spite
基于模块阵列结构的算法半定制VLSI
提出了一种基于符号数(SD)[1]算术模块的新型算术VLSI阵列。该模块是一个通用模块,主要由SD加法器组成。任何基于加法、减法和乘法的算术运算都可以通过适当指定模块之间的互连来实现。该模块阵列在设计和制造方面比门阵列更有用,而且周转时间短。基于加法器的模块可以独立于字长实现高速运算。此外,多值双向电流模式电路被有效地用于SD算法VLSI的紧凑实现[2]。模块(PAM)由加法器、部分积发生器(PPG)、符号逆变器、两个编码器和四个接线块(W1、W2、W3、W4)组成,如图1所示。模块中的一种操作模式可以根据接线模块的规格进行选择,因此可以使用该模块构建任何算术系统。为了实现高速紧凑的模块,我们引入了基于多值双向电流模电路的基数-4最小冗余SD算法系统。由于在SD算法中消除了携带传播链[]],因此任何算术电路都可以使用基于加法器的结构来实现,并且具有高度并行性。因此,基于加法器的模块的使用率很高。尽管如此,在模块数组中可以预期速度操作
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信