A Multilevel NER Framework for Automatic Clinical Name Entity Recognition

T. Luu, R. Phan, Rachel Davey, G. Chetty
{"title":"A Multilevel NER Framework for Automatic Clinical Name Entity Recognition","authors":"T. Luu, R. Phan, Rachel Davey, G. Chetty","doi":"10.1109/ICDMW.2017.161","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel multilevel NER framework, for addressing the challenges of clinical name entity recognition, based on different machine learning and text mining algorithms. The proposed framework, with multiple levels, allows models for increasingly complex NER tasks to be built. The experimental evaluation on two different publicly available datasets, corresponding to different application contexts - the CLEF 2016 challenge shared task 1A for nursing handover context, and the BIONLP/NLPBPA 2004 challenge shared task on GENIA corpus for recognizing entities in microbiology, has validated the proposed framework.","PeriodicalId":389183,"journal":{"name":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a novel multilevel NER framework, for addressing the challenges of clinical name entity recognition, based on different machine learning and text mining algorithms. The proposed framework, with multiple levels, allows models for increasingly complex NER tasks to be built. The experimental evaluation on two different publicly available datasets, corresponding to different application contexts - the CLEF 2016 challenge shared task 1A for nursing handover context, and the BIONLP/NLPBPA 2004 challenge shared task on GENIA corpus for recognizing entities in microbiology, has validated the proposed framework.
用于临床名称实体自动识别的多层NER框架
在本文中,我们提出了一个新的多层NER框架,用于解决基于不同机器学习和文本挖掘算法的临床名称实体识别的挑战。提出的框架具有多个层次,允许为日益复杂的NER任务构建模型。在两个不同的公共可用数据集上的实验评估,对应于不同的应用环境- CLEF 2016挑战共享任务1A护理移交环境,以及BIONLP/NLPBPA 2004挑战共享任务GENIA语料库识别微生物学中的实体,验证了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信