Probabilistic Dominant Frequency Estimation in AF From ECGI

"Carlos Fambuena Santos, I. Hernández-Romero, C. Herrero Martín, Jana Reventós Presmanes, Eric Invers Rubio, L. Mont, Andreu M. Climent, Maria de la Salud Guillem Sánchez"
{"title":"Probabilistic Dominant Frequency Estimation in AF From ECGI","authors":"\"Carlos Fambuena Santos, I. Hernández-Romero, C. Herrero Martín, Jana Reventós Presmanes, Eric Invers Rubio, L. Mont, Andreu M. Climent, Maria de la Salud Guillem Sánchez\"","doi":"10.22489/CinC.2022.362","DOIUrl":null,"url":null,"abstract":"Non-invasive estimation of high frequency activation regions in atrial fibrillation (AF) may have an important role in patient stratification and ablation guidance. This work presents a methodology to robustly estimate DF maps in ECGI, where the uncertainty associated to the estimates is modelled making use of a set of ECGI solutions from a range of different lambda parameters (DF-LR) in Tikhonov O-order regularization. The proposed DF-LR method was compared to the $DFs$ obtained from the standard L-curve (DF-LC) optimization. Specifically, the highest dominant frequency (HDF) found with both methods was tested in 2 AF simulations. In addition, the reproducibility of the DF maps was studied in a clinical case using ECGI signals from a persistent AF patient. DF-LR method overcame the DF-LC in terms of HDF sensitivity. Furthermore, the mean absolute difference between consecutive DF maps was lower in DF-LR method $(0.64\\pm 0.34Hz\\quad vs \\quad 1.38\\pm 0.11 \\quad Hz)$ showing higher reproducibility.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive estimation of high frequency activation regions in atrial fibrillation (AF) may have an important role in patient stratification and ablation guidance. This work presents a methodology to robustly estimate DF maps in ECGI, where the uncertainty associated to the estimates is modelled making use of a set of ECGI solutions from a range of different lambda parameters (DF-LR) in Tikhonov O-order regularization. The proposed DF-LR method was compared to the $DFs$ obtained from the standard L-curve (DF-LC) optimization. Specifically, the highest dominant frequency (HDF) found with both methods was tested in 2 AF simulations. In addition, the reproducibility of the DF maps was studied in a clinical case using ECGI signals from a persistent AF patient. DF-LR method overcame the DF-LC in terms of HDF sensitivity. Furthermore, the mean absolute difference between consecutive DF maps was lower in DF-LR method $(0.64\pm 0.34Hz\quad vs \quad 1.38\pm 0.11 \quad Hz)$ showing higher reproducibility.
基于ECGI的AF的概率优势频率估计
心房颤动(AF)高频激活区的无创评估可能在患者分层和消融指导中具有重要作用。这项工作提出了一种稳健估计ECGI中DF映射的方法,其中与估计相关的不确定性是利用一组来自吉洪诺夫o阶正则化中不同lambda参数(DF- lr)的ECGI解决方案建模的。将所提出的DF-LR方法与标准l曲线(DF-LC)优化得到的DF-LR方法进行了比较。具体来说,在2次AF模拟中测试了两种方法发现的最高主导频率(HDF)。此外,在一个临床病例中,使用来自持续性房颤患者的ECGI信号研究了DF图的可重复性。DF-LR方法在HDF灵敏度方面优于DF-LC方法。此外,DF- lr方法中连续DF图谱之间的平均绝对差值更低(0.64\pm 0.34Hz\quad vs 1.38\pm 0.11 \quad Hz),显示出更高的再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信