Overlaying rings onto a mesh network

Y. Pointurier
{"title":"Overlaying rings onto a mesh network","authors":"Y. Pointurier","doi":"10.1109/ONDM.2012.6210203","DOIUrl":null,"url":null,"abstract":"Optical packet switching (OPS), a promising technology for small, high-capacity networks such as metro or regional networks, leverages optical transparency to decrease the number of interfaces to be deployed and the energy consumption of a network when compared with an opaque technology. Based on those principles, ring-based OPS techniques such as POADM (Packet Optical Add-Drop Multiplexers) were proposed in the past. However, many networks that are already deployed are physical meshes. In this paper, we tackle the problem of mapping OPS rings onto physical meshes. We propose meta-heuristic algorithms based on simulated annealing (SA) and a genetic algorithm (GA). The algorithms also determine where backbone/core nodes should be located. The algorithms minimize the cost of the network expressed for instance in terms of optoelectronic conversions. The impact of various physical constraints (maximum ring length, maximum number of wavelengths in a ring) are included and characterized. We show that, for standard physical constraints, a fully opaque Ethernet network requires 50% more optoelectronic devices than the proposed optical packet switching network.","PeriodicalId":151401,"journal":{"name":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Optical Network Design and Modelling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ONDM.2012.6210203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optical packet switching (OPS), a promising technology for small, high-capacity networks such as metro or regional networks, leverages optical transparency to decrease the number of interfaces to be deployed and the energy consumption of a network when compared with an opaque technology. Based on those principles, ring-based OPS techniques such as POADM (Packet Optical Add-Drop Multiplexers) were proposed in the past. However, many networks that are already deployed are physical meshes. In this paper, we tackle the problem of mapping OPS rings onto physical meshes. We propose meta-heuristic algorithms based on simulated annealing (SA) and a genetic algorithm (GA). The algorithms also determine where backbone/core nodes should be located. The algorithms minimize the cost of the network expressed for instance in terms of optoelectronic conversions. The impact of various physical constraints (maximum ring length, maximum number of wavelengths in a ring) are included and characterized. We show that, for standard physical constraints, a fully opaque Ethernet network requires 50% more optoelectronic devices than the proposed optical packet switching network.
将环覆盖到网状网络上
光分组交换(OPS)是一种很有前途的技术,适用于小型、高容量的网络,如城域或区域网络,与不透明技术相比,它利用光透明性来减少需要部署的接口数量和网络的能耗。基于这些原理,过去提出了基于环的OPS技术,如分组光加丢复用器(POADM)。然而,许多已经部署的网络都是物理网格。在本文中,我们解决了将OPS环映射到物理网格上的问题。我们提出了基于模拟退火(SA)和遗传算法(GA)的元启发式算法。这些算法还决定了骨干/核心节点的位置。该算法使网络的成本最小化,例如以光电转换的方式表示。各种物理约束(最大环长度,环中的最大波长数)的影响包括和表征。我们表明,对于标准的物理限制,一个完全不透明的以太网需要比提议的光分组交换网络多50%的光电设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信