Identify Vulnerability Fix Commits Automatically Using Hierarchical Attention Network

Mingxin Sun, Wenjie Wang, Hantao Feng, Hongu Sun, Yuqing Zhang
{"title":"Identify Vulnerability Fix Commits Automatically Using Hierarchical Attention Network","authors":"Mingxin Sun, Wenjie Wang, Hantao Feng, Hongu Sun, Yuqing Zhang","doi":"10.4108/eai.13-7-2018.164552","DOIUrl":null,"url":null,"abstract":"The application of machine learning and deep learning in the field of vulnerability detection is a hot topic in security research, but currently it faces the problem of lack of dataset. Considering vulnerable code can be obtained from vulnerability fix commits, we propose an automatic vulnerability commit identification tool based on hierarchical attention network (HAN) to expand existing vulnerability dataset. HAN can model the input data at the word and sentence levels respectively and pay attention to the changes in the characteristics of different words in different categories, which improves the classification performance. Experimental results show that the accuracy and F1 of our model both achieve 92%. Through the vulnerability fix commit, researchers can quickly locate the vulnerable code. And extracting vulnerable code from open-source software can effectively expand the current dataset due to the enormous number of open-source software. Received on 14 April 2020; accepted on 05 May 2020; published on 12 May 2020","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.164552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The application of machine learning and deep learning in the field of vulnerability detection is a hot topic in security research, but currently it faces the problem of lack of dataset. Considering vulnerable code can be obtained from vulnerability fix commits, we propose an automatic vulnerability commit identification tool based on hierarchical attention network (HAN) to expand existing vulnerability dataset. HAN can model the input data at the word and sentence levels respectively and pay attention to the changes in the characteristics of different words in different categories, which improves the classification performance. Experimental results show that the accuracy and F1 of our model both achieve 92%. Through the vulnerability fix commit, researchers can quickly locate the vulnerable code. And extracting vulnerable code from open-source software can effectively expand the current dataset due to the enormous number of open-source software. Received on 14 April 2020; accepted on 05 May 2020; published on 12 May 2020
使用分层注意网络自动识别漏洞修复提交
机器学习和深度学习在漏洞检测领域的应用是安全研究的热点,但目前面临着缺乏数据集的问题。考虑到漏洞修复提交可以获取漏洞代码,提出了一种基于层次关注网络(HAN)的漏洞提交自动识别工具,对现有漏洞数据集进行扩展。HAN可以分别在词和句子两个层面对输入数据进行建模,关注不同类别中不同词的特征变化,提高了分类性能。实验结果表明,该模型的准确率和F1均达到92%。通过漏洞修复提交,研究人员可以快速定位漏洞代码。由于开源软件数量庞大,从开源软件中提取漏洞代码可以有效地扩展现有数据集。2020年4月14日收到;2020年5月5日接受;发布于2020年5月12日
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信