T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras
{"title":"A Cross-Modal Variational Framework For Food Image Analysis","authors":"T. Theodoridis, V. Solachidis, K. Dimitropoulos, P. Daras","doi":"10.1109/ICIP40778.2020.9190758","DOIUrl":null,"url":null,"abstract":"Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Food analysis resides at the core of modern nutrition recommender systems, providing the foundation for a high-level understanding of users’ eating habits. This paper focuses on the sub-task of ingredient recognition from food images using a variational framework. The framework consists of two variational encoder-decoder branches, aimed at processing information from different modalities (images and text), as well as a variational mapper branch, which accomplishes the task of aligning the distributions of the individual branches. Experimental results on the Yummly-28K data-set showcase that the proposed framework performs better than similar variational frameworks, while it surpasses current state-of-the-art approaches on the large-scale Recipe1M data-set.