Forced Nutation for Rigid Earth Model with Different Theories

M. Soliman, H. Selim, I. A. Hassan
{"title":"Forced Nutation for Rigid Earth Model with Different Theories","authors":"M. Soliman, H. Selim, I. A. Hassan","doi":"10.11648/J.IJAMTP.20190503.16","DOIUrl":null,"url":null,"abstract":"Where Earth is not strictly rigid body but can responds to any effects that tend to its rotation and shape, we will explain, in the present paper, the goal which is to define the forced nutation for a rigid Earth model using two different theories. We will formulate a first order Hamiltonian of a deformable Earth for its rotational motion around the Sun through the contribution of triaxial symmetry of the Earth. The formulation of the theory will be formed twice times. Firstly, deduce the tidal affect’s forces by Luni - Solar attraction coupling with the Earth’s geopotential force. Secondly, through the formulation, we will neglect the coupling between the different effects (the geopotential Earth force effect and the Luni - Solar attraction force), so, we will find the transform of the Hamiltonian for each force separately. The analytical solution for the formulated Hamiltonian will be derived for the two cases by using perturbation technique of Lie - Hori series. Once can get the analytical solution by getting the generation function, we will derive the nutation series analytically and numerically for each case and conclude over the results.","PeriodicalId":367229,"journal":{"name":"International Journal of Applied Mathematics and Theoretical Physics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJAMTP.20190503.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Where Earth is not strictly rigid body but can responds to any effects that tend to its rotation and shape, we will explain, in the present paper, the goal which is to define the forced nutation for a rigid Earth model using two different theories. We will formulate a first order Hamiltonian of a deformable Earth for its rotational motion around the Sun through the contribution of triaxial symmetry of the Earth. The formulation of the theory will be formed twice times. Firstly, deduce the tidal affect’s forces by Luni - Solar attraction coupling with the Earth’s geopotential force. Secondly, through the formulation, we will neglect the coupling between the different effects (the geopotential Earth force effect and the Luni - Solar attraction force), so, we will find the transform of the Hamiltonian for each force separately. The analytical solution for the formulated Hamiltonian will be derived for the two cases by using perturbation technique of Lie - Hori series. Once can get the analytical solution by getting the generation function, we will derive the nutation series analytically and numerically for each case and conclude over the results.
不同理论下刚性地球模型的强迫章动
地球不是严格刚体,但可以响应任何倾向于其旋转和形状的影响,我们将在本文中解释,目标是使用两种不同的理论来定义刚性地球模型的强迫章动。我们将通过地球的三轴对称性的贡献,给出可变形地球绕太阳旋转运动的一阶哈密顿量。理论的提法将形成两次。首先,通过太阳引力与地球位势力的耦合推导出潮汐效应的力。其次,通过公式,我们将忽略不同作用之间的耦合(地球势能作用和鲁尼-太阳引力),因此,我们将分别找到每种力的哈密顿量的变换。利用李和利级数的摄动技术,导出了这两种情况下的哈密顿公式的解析解。一旦通过生成函数得到解析解,我们将对每种情况进行解析和数值推导章动级数,并对结果进行总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信