Implementing Machine Learning Algorithms to Predict Donor Status: Preliminary Work with Data from an Institution of Higher Learning

Cecilia Coulter, Paula Baingana, Pascaline Mukakamari
{"title":"Implementing Machine Learning Algorithms to Predict Donor Status: Preliminary Work with Data from an Institution of Higher Learning","authors":"Cecilia Coulter, Paula Baingana, Pascaline Mukakamari","doi":"10.26439/ciis2019.5527","DOIUrl":null,"url":null,"abstract":"Identifying potential donors allows institutions of higher learning to conduct more effective fundraising campaigns. Machine learning classification algorithms can be useful in building models to predict donor status. However, when data contains imbalanced classes, like the data we used for this project, models tend to over-index the majority class, which was non-donors in this case. These results have significant implications for institutions in that they may not pursue entities that may, in fact, become donors. In order to improve the usefulness of our model, we used a resampling technique called random undersampling (RUS) to balance the data and also the area under the receiver operating characteristic curve (AUC-ROC) metric to evaluate the performance. Our final model improved its predictive power from 67% to 76%. Institutions of higher learning can use this machine learning model to more efficiently target the pool of potential donors, saving money and time. Future research will focus on improving the predictive accuracy of our model by exploring other data manipulation techniques that minimize the effect of imbalanced data, changing thresholds for classification algorithms, and using genetic programming and feature engineering.","PeriodicalId":365289,"journal":{"name":"Innovando la educación en tecnología. Actas del II Congreso Internacional de Ingeniería de Sistemas","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovando la educación en tecnología. Actas del II Congreso Internacional de Ingeniería de Sistemas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2019.5527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying potential donors allows institutions of higher learning to conduct more effective fundraising campaigns. Machine learning classification algorithms can be useful in building models to predict donor status. However, when data contains imbalanced classes, like the data we used for this project, models tend to over-index the majority class, which was non-donors in this case. These results have significant implications for institutions in that they may not pursue entities that may, in fact, become donors. In order to improve the usefulness of our model, we used a resampling technique called random undersampling (RUS) to balance the data and also the area under the receiver operating characteristic curve (AUC-ROC) metric to evaluate the performance. Our final model improved its predictive power from 67% to 76%. Institutions of higher learning can use this machine learning model to more efficiently target the pool of potential donors, saving money and time. Future research will focus on improving the predictive accuracy of our model by exploring other data manipulation techniques that minimize the effect of imbalanced data, changing thresholds for classification algorithms, and using genetic programming and feature engineering.
实现机器学习算法预测捐赠者状态:来自高等院校数据的初步工作
确定潜在的捐助者可以使高等院校开展更有效的筹款活动。机器学习分类算法可以用于建立模型来预测供体状态。然而,当数据包含不平衡的类时,就像我们在这个项目中使用的数据一样,模型倾向于过度索引大多数类,在这种情况下,这些类是非捐助者。这些结果对机构具有重大意义,因为它们可能不会追求实际上可能成为捐助者的实体。为了提高我们的模型的实用性,我们使用了一种称为随机欠采样(RUS)的重采样技术来平衡数据,也使用了接受者工作特征曲线(AUC-ROC)指标下的面积来评估性能。我们的最终模型将其预测能力从67%提高到76%。高等院校可以利用这种机器学习模型更有效地锁定潜在捐赠者,从而节省资金和时间。未来的研究将集中在通过探索其他数据操作技术来提高我们模型的预测准确性,这些技术可以最大限度地减少不平衡数据的影响,改变分类算法的阈值,以及使用遗传编程和特征工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信