A `xi`-projectively flat connection on Kenmotsu manifolds

V. Pirhadi
{"title":"A `xi`-projectively flat connection on Kenmotsu manifolds","authors":"V. Pirhadi","doi":"10.29252/maco.1.1.2","DOIUrl":null,"url":null,"abstract":"‎In this paper‎, ‎we introduce a semi-symmetric non-metric connection on `eta`-Kenmotsu manifolds that changes an `eta`-Kenmotsu manifold into an Einstein manifold‎. ‎Next‎, ‎we consider an especial version of this connection and show that every Kenmotsu manifold is `xi`-projectively flat with respect to this connection‎. ‎Also‎, ‎we prove that if the Kenmotsu manifold `M` is a `xi`-concircular flat with respect to the new connection‎, ‎then `M` is necessarily of zero scalar curvature‎. ‎Then‎, ‎we review the sense of `xi`-conformally flat on Kenmotsu manifolds and show that a `xi`-conformally flat Kenmotsu manifold with respect to the new connection is an `eta`-Einstein with respect to the Levi-Civita connection‎. ‎Finally‎, ‎we prove that there is no `xi`-conharmonically flat Kenmotsu manifold with respect to this connection‎.","PeriodicalId":360771,"journal":{"name":"Mathematical Analysis and Convex Optimization","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Analysis and Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/maco.1.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

‎In this paper‎, ‎we introduce a semi-symmetric non-metric connection on `eta`-Kenmotsu manifolds that changes an `eta`-Kenmotsu manifold into an Einstein manifold‎. ‎Next‎, ‎we consider an especial version of this connection and show that every Kenmotsu manifold is `xi`-projectively flat with respect to this connection‎. ‎Also‎, ‎we prove that if the Kenmotsu manifold `M` is a `xi`-concircular flat with respect to the new connection‎, ‎then `M` is necessarily of zero scalar curvature‎. ‎Then‎, ‎we review the sense of `xi`-conformally flat on Kenmotsu manifolds and show that a `xi`-conformally flat Kenmotsu manifold with respect to the new connection is an `eta`-Einstein with respect to the Levi-Civita connection‎. ‎Finally‎, ‎we prove that there is no `xi`-conharmonically flat Kenmotsu manifold with respect to this connection‎.
Kenmotsu流形上的“xi”-投影平面连接
在本文中,我们引入了一个关于' eta ' -Kenmotsu流形的半对称非度量连接,它将' eta ' -Kenmotsu流形变为爱因斯坦流形。接下来,我们考虑这个连接的一个特殊版本,并证明每个Kenmotsu流形都是xi——相对于这个连接来说是投影平坦的。同样,我们证明了如果Kenmotsu流形' M '是关于新连接的' xi ' -共圆平面',那么' M '必然具有零标量曲率'。然后,我们回顾了“xi”在Kenmotsu流形上的共形平坦的意义,并证明了一个“xi”在新连接下的共形平坦的Kenmotsu流形是一个“eta”在Levi-Civita连接下的einstein。最后,我们证明了在这个联系下不存在“xi”-调和平坦的Kenmotsu流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信