CFD Validation of Incompressible Cross-Flow Discharge Coefficients

Q. Rayer
{"title":"CFD Validation of Incompressible Cross-Flow Discharge Coefficients","authors":"Q. Rayer","doi":"10.59972/5xber0cm","DOIUrl":null,"url":null,"abstract":"Validation against air systems problems is required to enable Computational Fluid Dynamics (CFD) codes to be confidently used in the design of turbine cooling air systems. CFD calculations of orifice cross-flow discharge coefficients (Cd) have been compared with measurements by Rohde et al [1]. Simulations have been carried out for cases with a low main duct Mach number (Md ~ 0.25) using incompressible flow modelling. Comparisons have been made of cross-flow discharge coefficients for a range of pressure-head ratios and Mach numbers. Results at a main duct Mach number of 0.07 were obtained using the standard k-ε.: turbulence model which gave agreement to better than 5% for absolute values of pressure-head ratios and discharge coefficients. The trends in the data for pressure-head ratios and Mach numbers were also reproduced. At a higher main duct Mach number of 0.25, the Mach number in the vicinity of the orifice reached 0.8. As expected this rendered incompressible flow modelling unsuitable, resulting in inaccurate determinations of orifice pressure-drops. Work is already in progress to simulate high Mach number cases using a more suitable compressible flow model. The results obtained so far give confidence that CFD will become a valuable tool for evaluating air system losses in novel configurations.","PeriodicalId":183819,"journal":{"name":"NAFEMS International Journal of CFD Case Studies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFEMS International Journal of CFD Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59972/5xber0cm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Validation against air systems problems is required to enable Computational Fluid Dynamics (CFD) codes to be confidently used in the design of turbine cooling air systems. CFD calculations of orifice cross-flow discharge coefficients (Cd) have been compared with measurements by Rohde et al [1]. Simulations have been carried out for cases with a low main duct Mach number (Md ~ 0.25) using incompressible flow modelling. Comparisons have been made of cross-flow discharge coefficients for a range of pressure-head ratios and Mach numbers. Results at a main duct Mach number of 0.07 were obtained using the standard k-ε.: turbulence model which gave agreement to better than 5% for absolute values of pressure-head ratios and discharge coefficients. The trends in the data for pressure-head ratios and Mach numbers were also reproduced. At a higher main duct Mach number of 0.25, the Mach number in the vicinity of the orifice reached 0.8. As expected this rendered incompressible flow modelling unsuitable, resulting in inaccurate determinations of orifice pressure-drops. Work is already in progress to simulate high Mach number cases using a more suitable compressible flow model. The results obtained so far give confidence that CFD will become a valuable tool for evaluating air system losses in novel configurations.
不可压缩交叉流流量系数的CFD验证
为了使计算流体动力学(CFD)代码能够自信地用于涡轮冷却空气系统的设计,需要对空气系统问题进行验证。通过CFD计算得到的孔板横流流量系数(Cd)与Rohde等人的测量结果进行了比较[10]。采用不可压缩流动模型对低主风道马赫数(Md ~ 0.25)工况进行了模拟。对不同压头比和马赫数下的横流流量系数进行了比较。在主风道马赫数为0.07时,用标准k-ε计算得到了结果。湍流模型,对压头比和流量系数的绝对值的一致性优于5%。还再现了压头比和马赫数数据的趋势。在较高的主风道马赫数为0.25时,孔板附近的马赫数达到0.8。正如预期的那样,这使得不可压缩流动模型不合适,导致孔板压降的确定不准确。使用更合适的可压缩流模型来模拟高马赫数情况的工作已经在进行中。到目前为止所获得的结果使我们相信CFD将成为评估新型结构空气系统损失的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信