{"title":"The Paradigm of Complex Probability and Isaac Newton’s Classical Mechanics: On the Foundation of Statistical Physics","authors":"Abdo Abou Jaoude","doi":"10.5772/intechopen.98341","DOIUrl":null,"url":null,"abstract":"The concept of mathematical probability was established in 1933 by Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a result, any random experiment can be executed in the complex probabilities set C which is the sum of the real probabilities set R and the imaginary probabilities set M. We aim here to incorporate supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory in R and therefore to compute all the probabilities in the sets R, M, and C. Accordingly, the probability in the whole set C = R + M is constantly equivalent to one independently of the distribution of the input random variable in R, and subsequently the output of the stochastic experiment in R can be determined absolutely in C. This is the consequence of the fact that the probability in C is computed after the subtraction of the chaotic factor from the degree of our knowledge of the nondeterministic experiment. We will apply this innovative paradigm to Isaac Newton’s classical mechanics and to prove as well in an original way an important property at the foundation of statistical physics.","PeriodicalId":308418,"journal":{"name":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Monte Carlo Methods - Recent Advances, New Perspectives and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.98341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The concept of mathematical probability was established in 1933 by Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a result, any random experiment can be executed in the complex probabilities set C which is the sum of the real probabilities set R and the imaginary probabilities set M. We aim here to incorporate supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory in R and therefore to compute all the probabilities in the sets R, M, and C. Accordingly, the probability in the whole set C = R + M is constantly equivalent to one independently of the distribution of the input random variable in R, and subsequently the output of the stochastic experiment in R can be determined absolutely in C. This is the consequence of the fact that the probability in C is computed after the subtraction of the chaotic factor from the degree of our knowledge of the nondeterministic experiment. We will apply this innovative paradigm to Isaac Newton’s classical mechanics and to prove as well in an original way an important property at the foundation of statistical physics.