Early gear tooth crack detection based on singular value decomposition

Yuejian Chen, M. Zuo
{"title":"Early gear tooth crack detection based on singular value decomposition","authors":"Yuejian Chen, M. Zuo","doi":"10.1109/ICPHM.2019.8819417","DOIUrl":null,"url":null,"abstract":"Detection of gear tooth crack fault through vibration analysis relies on extracting the fault induced periodic impulses. Singular value decomposition (SVD)-based methods have been used for periodic impulse extraction. Reported reweighted SVD-based method did not consider interferences from non-fault related vibration components on the periodic modulation intensity (PMI) criteria, leading to the selection of incorrect signal component(s) for reconstruction. This paper proposes an improved SVD-based method by adopting autoregression model-based baseline removal approach. SVD is applied to decompose the residual signal, instead of the raw signal. The interferences from non-fault related vibration components on the PMI are therefore eliminated. Simulation study has shown that the improved method outperforms the reported method in detecting early tooth crack fault.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detection of gear tooth crack fault through vibration analysis relies on extracting the fault induced periodic impulses. Singular value decomposition (SVD)-based methods have been used for periodic impulse extraction. Reported reweighted SVD-based method did not consider interferences from non-fault related vibration components on the periodic modulation intensity (PMI) criteria, leading to the selection of incorrect signal component(s) for reconstruction. This paper proposes an improved SVD-based method by adopting autoregression model-based baseline removal approach. SVD is applied to decompose the residual signal, instead of the raw signal. The interferences from non-fault related vibration components on the PMI are therefore eliminated. Simulation study has shown that the improved method outperforms the reported method in detecting early tooth crack fault.
基于奇异值分解的齿轮齿裂早期检测
通过振动分析检测齿轮齿裂故障依赖于故障诱发周期脉冲的提取。基于奇异值分解(SVD)的方法被用于周期性脉冲提取。已有的基于重加权奇异值分解的方法没有考虑非故障相关振动分量对周期调制强度(PMI)准则的干扰,导致选择错误的信号分量进行重构。本文提出了一种改进的基于奇异值分解的方法,采用基于自回归模型的基线去除方法。用奇异值分解来分解残差信号,而不是原始信号。因此,消除了非故障相关振动部件对PMI的干扰。仿真研究表明,改进后的方法在检测早期齿裂故障方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信