Gain-Scheduling Composite Nonlinear Feedback Control for a Set of 2nd Order Linear Parameter-Varying Systems

Veli-Pekka Pyrhonen, H. Koivisto, M. Vilkko
{"title":"Gain-Scheduling Composite Nonlinear Feedback Control for a Set of 2nd Order Linear Parameter-Varying Systems","authors":"Veli-Pekka Pyrhonen, H. Koivisto, M. Vilkko","doi":"10.23919/ECC.2018.8550244","DOIUrl":null,"url":null,"abstract":"We present in this paper gain-scheduling composite nonlinear feedback (CNF) control for a set of second-order linear parameter-varying (LPV) systems that capture commonly used plant models in automatic control. The selected three parameter-varying plant models are double integrator with a gain, a series connection of an integrator and a first order system, and a second-order system without integration. We assume that the parameters of the plant models depend on an exogenous scheduling signal, which is unknown a priori, but it is measurable online and available for feedback control. The resulting model-based parameter-varying CNF controller assigns certain predefined properties for the closed-loop control system, which can be explained using linear time invariant (LTI) control theory. We demonstrate the proposed control structure with a simulation-based design example, in which a plant model is updated through a slowly varying scheduling signal, and, at the same time, the closed-loop system is commanded towards desired reference values. Our simulation results indicate that the closed-loop control system yields satisfactory tracking performance under parameter-varying conditions.","PeriodicalId":222660,"journal":{"name":"2018 European Control Conference (ECC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2018.8550244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present in this paper gain-scheduling composite nonlinear feedback (CNF) control for a set of second-order linear parameter-varying (LPV) systems that capture commonly used plant models in automatic control. The selected three parameter-varying plant models are double integrator with a gain, a series connection of an integrator and a first order system, and a second-order system without integration. We assume that the parameters of the plant models depend on an exogenous scheduling signal, which is unknown a priori, but it is measurable online and available for feedback control. The resulting model-based parameter-varying CNF controller assigns certain predefined properties for the closed-loop control system, which can be explained using linear time invariant (LTI) control theory. We demonstrate the proposed control structure with a simulation-based design example, in which a plant model is updated through a slowly varying scheduling signal, and, at the same time, the closed-loop system is commanded towards desired reference values. Our simulation results indicate that the closed-loop control system yields satisfactory tracking performance under parameter-varying conditions.
一类二阶线性变参数系统的增益-调度复合非线性反馈控制
本文针对一类二阶线性变参系统(LPV)提出了增益调度复合非线性反馈(CNF)控制方法,该方法捕获了自动控制中常用的对象模型。选取了带增益的双积分器、积分器与一阶系统串联、无积分的二阶系统三种变参数对象模型。我们假设植物模型的参数依赖于一个外源调度信号,该信号是先验未知的,但它是在线可测量的,可用于反馈控制。所得到的基于模型的变参数CNF控制器赋予闭环控制系统一定的预定义属性,这可以用线性时不变(LTI)控制理论来解释。我们通过一个基于仿真的设计示例来演示所提出的控制结构,其中通过缓慢变化的调度信号更新工厂模型,同时命令闭环系统向期望的参考值移动。仿真结果表明,该闭环控制系统在变参数条件下具有良好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信